1,210 research outputs found

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    Simulation of DSDV Protocol

    Get PDF
    An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. This Application is the innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. This paper is practically applied using the specifications that are defined through Highly Dynamic Destination Sequenced Distance Vector Routing Algorithm

    A performance study of routing protocols for mobile grid environment

    Get PDF
    Integration of mobile wireless consumer devices into the Grid initially seems unlikely due to limitation such as CPU performance,small secondary storage, heightened battery consumption sensitivity and unreliable low-bandwidth communication. The current grid architecture and algorithm also do not take into account the mobile computing environment since mobile devices have not been seriously considered as valid computing resources or interfaces in grid communities. This paper presents the results of simulation done in identifying a suitable ad hoc routing protocol that can be used for the target grid application in mobile environment. The simulation comparing three ad hoc routing protocols named DSDV, DSR and AODV

    On using Multiple Quality Link Metrics with Destination Sequenced Distance Vector Protocol for Wireless Multi-Hop Networks

    Full text link
    In this paper, we compare and analyze performance of five quality link metrics forWireless Multi-hop Networks (WMhNs). The metrics are based on loss probability measurements; ETX, ETT, InvETX, ML and MD, in a distance vector routing protocol; DSDV. Among these selected metrics, we have implemented ML, MD, InvETX and ETT in DSDV which are previously implemented with different protocols; ML, MD, InvETX are implemented with OLSR, while ETT is implemented in MR-LQSR. For our comparison, we have selected Throughput, Normalized Routing Load (NRL) and End-to-End Delay (E2ED) as performance parameters. Finally, we deduce that InvETX due to low computational burden and link asymmetry measurement outperforms among all metrics
    corecore