10,330 research outputs found

    Synthesis of Recursive ADT Transformations from Reusable Templates

    Full text link
    Recent work has proposed a promising approach to improving scalability of program synthesis by allowing the user to supply a syntactic template that constrains the space of potential programs. Unfortunately, creating templates often requires nontrivial effort from the user, which impedes the usability of the synthesizer. We present a solution to this problem in the context of recursive transformations on algebraic data-types. Our approach relies on polymorphic synthesis constructs: a small but powerful extension to the language of syntactic templates, which makes it possible to define a program space in a concise and highly reusable manner, while at the same time retains the scalability benefits of conventional templates. This approach enables end-users to reuse predefined templates from a library for a wide variety of problems with little effort. The paper also describes a novel optimization that further improves the performance and scalability of the system. We evaluated the approach on a set of benchmarks that most notably includes desugaring functions for lambda calculus, which force the synthesizer to discover Church encodings for pairs and boolean operations

    Variable elimination for building interpreters

    Get PDF
    In this paper, we build an interpreter by reusing host language functions instead of recoding mechanisms of function application that are already available in the host language (the language which is used to build the interpreter). In order to transform user-defined functions into host language functions we use combinatory logic : lambda-abstractions are transformed into a composition of combinators. We provide a mechanically checked proof that this step is correct for the call-by-value strategy with imperative features.Comment: 33 page

    A New Approach to Probabilistic Programming Inference

    Full text link
    We introduce and demonstrate a new approach to inference in expressive probabilistic programming languages based on particle Markov chain Monte Carlo. Our approach is simple to implement and easy to parallelize. It applies to Turing-complete probabilistic programming languages and supports accurate inference in models that make use of complex control flow, including stochastic recursion. It also includes primitives from Bayesian nonparametric statistics. Our experiments show that this approach can be more efficient than previously introduced single-site Metropolis-Hastings methods.Comment: Updated version of the 2014 AISTATS paper (to reflect changes in new language syntax). 10 pages, 3 figures. Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Vol 33, 201
    • …
    corecore