3 research outputs found

    Properties of untranslated regions of the S. cerevisiae genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During evolution selection forces such as changing environments shape the architecture of genomes. The distribution of genes along chromosomes and the length of intragenic regions are basic genomic features known to play a major role in the regulation of gene transcription and translation.</p> <p>Results</p> <p>In this work we perform the first large scale analysis of the length distribution of untranslated regions (promoters, 5' and 3' untranslated regions, terminators) in the genome of the yeast <it>Saccharomyces cerevisiae</it>. Our analysis shows that the length of each open reading frame (ORF) and that of its associated regulatory and untranslated regions significantly correlate with each other. Moreover, significant correlations with other features related to gene expression and evolution (number of regulating transcription factors, mRNA and protein abundance, evolutionary rate, etc) were observed. Furthermore, the function of genes seems to have an important role in the evolution of these lengths. Notably, genes that are related to RNA metabolism tend to have shorter untranslated regions and thus tend to be closer to their neighbouring genes while genes coding for cell wall proteins tend to be isolated in the genome.</p> <p>Conclusion</p> <p>These results indicate that genome architecture has a significant role in regulating gene expression, and in shaping the characteristics and functionality of proteins.</p

    HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size Rather Than Frequency

    Get PDF
    Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses
    corecore