20 research outputs found

    A 2-Categorical Analysis of Complementary Families, Quantum Key Distribution and the Mean King Problem

    Full text link
    This paper explores the use of 2-categorical technology for describing and reasoning about complex quantum procedures. We give syntactic definitions of a family of complementary measurements, and of quantum key distribution, and show that they are equivalent. We then show abstractly that either structure gives a solution to the Mean King problem, which we also formulate 2-categorically.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Bicategorical Semantics for Nondeterministic Computation

    Full text link
    We outline a bicategorical syntax for the interaction between public and private information in classical information theory. We use this to give high-level graphical definitions of encrypted communication and secret sharing protocols, including a characterization of their security properties. Remarkably, this makes it clear that the protocols have an identical abstract form to the quantum teleportation and dense coding procedures, yielding evidence of a deep connection between classical and quantum information processing. We also formulate public-key cryptography using our scheme. Specific implementations of these protocols as nondeterministic classical procedures are recovered by applying our formalism in a symmetric monoidal bicategory of matrices of relations.Comment: 21 page

    Groupoid Semantics for Thermal Computing

    Full text link
    A groupoid semantics is presented for systems with both logical and thermal degrees of freedom. We apply this to a syntactic model for encryption, and obtain an algebraic characterization of the heat produced by the encryption function, as predicted by Landauer's principle. Our model has a linear representation theory that reveals an underlying quantum semantics, giving for the first time a functorial classical model for quantum teleportation and other quantum phenomena.Comment: We describe a groupoid model for thermodynamic computation, and a quantization procedure that turns encrypted communication into quantum teleportation. Everything is done using higher category theor

    The Topology of Quantum Algorithms

    Full text link
    We use a categorical topological semantics to examine the Deutsch-Jozsa, hidden subgroup and single-shot Grover algorithms. This reveals important structures hidden by conventional algebraic presentations, and allows novel proofs of correctness via local topological operations, giving for the first time a satisfying high-level explanation for why these procedures work. We also investigate generalizations of these algorithms, providing improved analyses of those already in the literature, and a new generalization of the single-shot Grover algorithm.Comment: 33 pages. Updated to match the final published articl

    Shaded Tangles for the Design and Verification of Quantum Programs (Extended Abstract)

    Full text link
    We give a scheme for interpreting shaded tangles as quantum programs, with the property that isotopic tangles yield equivalent programs. We analyze many known quantum programs in this way -- including entanglement manipulation and error correction -- and in each case present a fully-topological formal verification, yielding in several cases substantial new insight into how the program works. We also use our methods to identify several new or generalized procedures.Comment: In Proceedings QPL 2017, arXiv:1802.0973

    A classical groupoid model for quantum networks

    Full text link
    We give a mathematical analysis of a new type of classical computer network architecture, intended as a model of a new technology that has recently been proposed in industry. Our approach is based on groubits, generalizations of classical bits based on groupoids. This network architecture allows the direct execution of a number of protocols that are usually associated with quantum networks, including teleportation, dense coding and secure key distribution

    Mixed quantum states in higher categories

    Get PDF
    There are two ways to describe the interaction between classical and quantum information categorically: one based on completely positive maps between Frobenius algebras, the other using symmetric monoidal 2-categories. This paper makes a first step towards combining the two. The integrated approach allows a unified description of quantum teleportation and classical encryption in a single 2-category, as well as a universal security proof applicable simultaneously to both scenarios.Comment: In Proceedings QPL 2014, arXiv:1412.810

    A Classical Groupoid Model for Quantum Networks

    Get PDF
    We give a mathematical analysis of a new type of classical computer network architecture, intended as a model of a new technology that has recently been proposed in industry. Our approach is based on groubits, generalizations of classical bits based on groupoids. This network architecture allows the direct execution of a number of protocols that are usually associated with quantum networks, including teleportation, dense coding and secure key distribution
    corecore