5,831 research outputs found

    Polynomial Chaos Expansion of random coefficients and the solution of stochastic partial differential equations in the Tensor Train format

    Full text link
    We apply the Tensor Train (TT) decomposition to construct the tensor product Polynomial Chaos Expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format, but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. Besides, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its post-processing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.Comment: This is a major revision of the manuscript arXiv:1406.2816 with significantly extended numerical experiments. Some unused material is remove

    Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients

    Full text link
    Stochastic sampling methods are arguably the most direct and least intrusive means of incorporating parametric uncertainty into numerical simulations of partial differential equations with random inputs. However, to achieve an overall error that is within a desired tolerance, a large number of sample simulations may be required (to control the sampling error), each of which may need to be run at high levels of spatial fidelity (to control the spatial error). Multilevel sampling methods aim to achieve the same accuracy as traditional sampling methods, but at a reduced computational cost, through the use of a hierarchy of spatial discretization models. Multilevel algorithms coordinate the number of samples needed at each discretization level by minimizing the computational cost, subject to a given error tolerance. They can be applied to a variety of sampling schemes, exploit nesting when available, can be implemented in parallel and can be used to inform adaptive spatial refinement strategies. We extend the multilevel sampling algorithm to sparse grid stochastic collocation methods, discuss its numerical implementation and demonstrate its efficiency both theoretically and by means of numerical examples

    Multi-index Stochastic Collocation convergence rates for random PDEs with parametric regularity

    Full text link
    We analyze the recent Multi-index Stochastic Collocation (MISC) method for computing statistics of the solution of a partial differential equation (PDEs) with random data, where the random coefficient is parametrized by means of a countable sequence of terms in a suitable expansion. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data and, naturally, the error analysis uses the joint regularity of the solution with respect to both the variables in the physical domain and parametric variables. In MISC, the number of problem solutions performed at each discretization level is not determined by balancing the spatial and stochastic components of the error, but rather by suitably extending the knapsack-problem approach employed in the construction of the quasi-optimal sparse-grids and Multi-index Monte Carlo methods. We use a greedy optimization procedure to select the most effective mixed differences to include in the MISC estimator. We apply our theoretical estimates to a linear elliptic PDEs in which the log-diffusion coefficient is modeled as a random field, with a covariance similar to a Mat\'ern model, whose realizations have spatial regularity determined by a scalar parameter. We conduct a complexity analysis based on a summability argument showing algebraic rates of convergence with respect to the overall computational work. The rate of convergence depends on the smoothness parameter, the physical dimensionality and the efficiency of the linear solver. Numerical experiments show the effectiveness of MISC in this infinite-dimensional setting compared with the Multi-index Monte Carlo method and compare the convergence rate against the rates predicted in our theoretical analysis

    Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods

    Get PDF
    In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partial differential system and establish its well-posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid High-Order discretization supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the probability error of the Polynomial Chaos approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.Comment: 30 pages, 15 Figure
    corecore