17 research outputs found

    Indexability, concentration, and VC theory

    Get PDF
    Degrading performance of indexing schemes for exact similarity search in high dimensions has long since been linked to histograms of distributions of distances and other 1-Lipschitz functions getting concentrated. We discuss this observation in the framework of the phenomenon of concentration of measure on the structures of high dimension and the Vapnik-Chervonenkis theory of statistical learning.Comment: 17 pages, final submission to J. Discrete Algorithms (an expanded, improved and corrected version of the SISAP'2010 invited paper, this e-print, v3

    New Unconditional Hardness Results for Dynamic and Online Problems

    Get PDF
    There has been a resurgence of interest in lower bounds whose truth rests on the conjectured hardness of well known computational problems. These conditional lower bounds have become important and popular due to the painfully slow progress on proving strong unconditional lower bounds. Nevertheless, the long term goal is to replace these conditional bounds with unconditional ones. In this paper we make progress in this direction by studying the cell probe complexity of two conjectured to be hard problems of particular importance: matrix-vector multiplication and a version of dynamic set disjointness known as Patrascu's Multiphase Problem. We give improved unconditional lower bounds for these problems as well as introducing new proof techniques of independent interest. These include a technique capable of proving strong threshold lower bounds of the following form: If we insist on having a very fast query time, then the update time has to be slow enough to compute a lookup table with the answer to every possible query. This is the first time a lower bound of this type has been proven

    Lower Bounds for Oblivious Near-Neighbor Search

    Get PDF
    We prove an Ω(dlgn/(lglgn)2)\Omega(d \lg n/ (\lg\lg n)^2) lower bound on the dynamic cell-probe complexity of statistically oblivious\mathit{oblivious} approximate-near-neighbor search (ANN\mathsf{ANN}) over the dd-dimensional Hamming cube. For the natural setting of d=Θ(logn)d = \Theta(\log n), our result implies an Ω~(lg2n)\tilde{\Omega}(\lg^2 n) lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for ANN\mathsf{ANN}. This is the first super-logarithmic unconditional\mathit{unconditional} lower bound for ANN\mathsf{ANN} against general (non black-box) data structures. We also show that any oblivious static\mathit{static} data structure for decomposable search problems (like ANN\mathsf{ANN}) can be obliviously dynamized with O(logn)O(\log n) overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).Comment: 28 page

    Lower Bounds on Time-Space Trade-Offs for Approximate Near Neighbors

    Get PDF
    We show tight lower bounds for the entire trade-off between space and query time for the Approximate Near Neighbor search problem. Our lower bounds hold in a restricted model of computation, which captures all hashing-based approaches. In articular, our lower bound matches the upper bound recently shown in [Laarhoven 2015] for the random instance on a Euclidean sphere (which we show in fact extends to the entire space Rd\mathbb{R}^d using the techniques from [Andoni, Razenshteyn 2015]). We also show tight, unconditional cell-probe lower bounds for one and two probes, improving upon the best known bounds from [Panigrahy, Talwar, Wieder 2010]. In particular, this is the first space lower bound (for any static data structure) for two probes which is not polynomially smaller than for one probe. To show the result for two probes, we establish and exploit a connection to locally-decodable codes.Comment: 47 pages, 2 figures; v2: substantially revised introduction, lots of small corrections; subsumed by arXiv:1608.03580 [cs.DS] (along with arXiv:1511.07527 [cs.DS]
    corecore