1,901 research outputs found

    Higher Dimensional Discrete Cheeger Inequalities

    Full text link
    For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that λ(G)≤h(G)\lambda(G) \leq h(G), where λ(G)\lambda(G) is the second smallest eigenvalue of the Laplacian of a graph GG and h(G)h(G) is the Cheeger constant measuring the edge expansion of GG. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs). Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on Z2\mathbb{Z}_2-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by h(X)h(X), was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed λ(X)≤h(X)\lambda(X) \leq h(X), where λ(X)\lambda(X) is the smallest non-trivial eigenvalue of the ((k−1)(k-1)-dimensional upper) Laplacian, for the case of kk-dimensional simplicial complexes XX with complete (k−1)(k-1)-skeleton. Whether this inequality also holds for kk-dimensional complexes with non-complete (k−1)(k-1)-skeleton has been an open question. We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed, and each allows for a different kind of additional strengthening of the original result.Comment: 14 pages, 2 figure

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Coboundary expanders

    Full text link
    We describe a natural topological generalization of edge expansion for graphs to regular CW complexes and prove that this property holds with high probability for certain random complexes.Comment: Version 2: significant rewrite. 18 pages, title changed, and main theorem extended to more general random complexe

    Cheeger constants of surfaces and isoperimetric inequalities

    Full text link
    We show that the Cheeger constant of compact surfaces is bounded by a function of the area. We apply this to isoperimetric profiles of bounded genus non-compact surfaces, to show that if their isoperimetric profile grows faster than t\sqrt t, then it grows at least as fast as a linear function. This generalizes a result of Gromov for simply connected surfaces. We study the isoperimetric problem in dimension 3. We show that if the filling volume function in dimension 2 is Euclidean, while in dimension 3 is sub-Euclidean and there is a gg such that minimizers in dimension 3 have genus at most gg, then the filling function in dimension 3 is `almost' linear.Comment: 28 page
    • …
    corecore