4 research outputs found

    Recursive algorithm, architectures and FPGA implementation of the two-dimensional discrete cosine transform

    Get PDF
    In this paper, a new recursive algorithm and two types of circuit architectures are presented for the computation of the two dimensional discrete cosine transform (2-D DCT). The new algorithm permits to compute the 2-D DCT by a simple procedure of the 1-D recursive calculations involving only cosine coefficients. The recursive kernel for the proposed algorithm contains a small number of operations. Also, it requires a smaller number of pre-computed data compared to many of existing algorithms in the same category. The kernel can be easily implemented in a simple circuit block with a short critical delay path. In order to evaluate the performance improvement resulting from the new algorithm, an architecture for the 2-D DCT designed by direct mapping from the computation structure of the proposed algorithm has been implemented in a FPGA board. The results show that the reduction of the hardware consumption can easily reach 25% and the clock frequency can increase 17% compared to a system implementing a recently reported 2-D DCT recursive algorithm. For a further reduction of the hardware, another architecture has been proposed for the same 2-D DCT computation. Using one recursive computation block to perform different functions, this architecture needs only approximately one half of the hardware that is required in the first architecture, which has been confirmed by a FPGA implementation

    High-throughput VLSI architectures for the 1-D and 2-D discrete cosine transforms

    No full text
    [[abstract]]© 1995 Institute of Electrical and Electronics Engineers - This paper presents a new systolic VLSI architecture to realize the full-search block matching algorithm for motion estimation. The architecture has an efficiency of 100 percent and a throughput of one motion vector per n2 cycles, where n×n is the reference block size. As compared to existing VLSI motion estimators with the same efficiency and throughput, the proposed one not only gains advantages in the flexibility of changing the reference block size and the tracking range, but also employs no additional control circuitry to determine the motion vectors. These features make it useful for a wide range of applications.[[department]]電機工程學

    Domain-specific and reconfigurable instruction cells based architectures for low-power SoC

    Get PDF
    corecore