36,260 research outputs found

    Concept-based Interactive Query Expansion Support Tool (CIQUEST)

    Get PDF
    This report describes a three-year project (2000-03) undertaken in the Information Studies Department at The University of Sheffield and funded by Resource, The Council for Museums, Archives and Libraries. The overall aim of the research was to provide user support for query formulation and reformulation in searching large-scale textual resources including those of the World Wide Web. More specifically the objectives were: to investigate and evaluate methods for the automatic generation and organisation of concepts derived from retrieved document sets, based on statistical methods for term weighting; and to conduct user-based evaluations on the understanding, presentation and retrieval effectiveness of concept structures in selecting candidate terms for interactive query expansion. The TREC test collection formed the basis for the seven evaluative experiments conducted in the course of the project. These formed four distinct phases in the project plan. In the first phase, a series of experiments was conducted to investigate further techniques for concept derivation and hierarchical organisation and structure. The second phase was concerned with user-based validation of the concept structures. Results of phases 1 and 2 informed on the design of the test system and the user interface was developed in phase 3. The final phase entailed a user-based summative evaluation of the CiQuest system. The main findings demonstrate that concept hierarchies can effectively be generated from sets of retrieved documents and displayed to searchers in a meaningful way. The approach provides the searcher with an overview of the contents of the retrieved documents, which in turn facilitates the viewing of documents and selection of the most relevant ones. Concept hierarchies are a good source of terms for query expansion and can improve precision. The extraction of descriptive phrases as an alternative source of terms was also effective. With respect to presentation, cascading menus were easy to browse for selecting terms and for viewing documents. In conclusion the project dissemination programme and future work are outlined

    Topic Identification for Speech without ASR

    Full text link
    Modern topic identification (topic ID) systems for speech use automatic speech recognition (ASR) to produce speech transcripts, and perform supervised classification on such ASR outputs. However, under resource-limited conditions, the manually transcribed speech required to develop standard ASR systems can be severely limited or unavailable. In this paper, we investigate alternative unsupervised solutions to obtaining tokenizations of speech in terms of a vocabulary of automatically discovered word-like or phoneme-like units, without depending on the supervised training of ASR systems. Moreover, using automatic phoneme-like tokenizations, we demonstrate that a convolutional neural network based framework for learning spoken document representations provides competitive performance compared to a standard bag-of-words representation, as evidenced by comprehensive topic ID evaluations on both single-label and multi-label classification tasks.Comment: 5 pages, 2 figures; accepted for publication at Interspeech 201

    Detecting and Explaining Crisis

    Full text link
    Individuals on social media may reveal themselves to be in various states of crisis (e.g. suicide, self-harm, abuse, or eating disorders). Detecting crisis from social media text automatically and accurately can have profound consequences. However, detecting a general state of crisis without explaining why has limited applications. An explanation in this context is a coherent, concise subset of the text that rationalizes the crisis detection. We explore several methods to detect and explain crisis using a combination of neural and non-neural techniques. We evaluate these techniques on a unique data set obtained from Koko, an anonymous emotional support network available through various messaging applications. We annotate a small subset of the samples labeled with crisis with corresponding explanations. Our best technique significantly outperforms the baseline for detection and explanation.Comment: Accepted at CLPsych, ACL workshop. 8 pages, 5 figure

    Similarity of Semantic Relations

    Get PDF
    There are at least two kinds of similarity. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For example, the word pair mason:stone is analogous to the pair carpenter:wood. This paper introduces Latent Relational Analysis (LRA), a method for measuring relational similarity. LRA has potential applications in many areas, including information extraction, word sense disambiguation, and information retrieval. Recently the Vector Space Model (VSM) of information retrieval has been adapted to measuring relational similarity, achieving a score of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the VSM approach, the relation between a pair of words is characterized by a vector of frequencies of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1) the patterns are derived automatically from the corpus, (2) the Singular Value Decomposition (SVD) is used to smooth the frequency data, and (3) automatically generated synonyms are used to explore variations of the word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the average human score of 57%. On the related problem of classifying semantic relations, LRA achieves similar gains over the VSM

    Human-Level Performance on Word Analogy Questions by Latent Relational Analysis

    Get PDF
    This paper introduces Latent Relational Analysis (LRA), a method for measuring relational similarity. LRA has potential applications in many areas, including information extraction, word sense disambiguation, machine translation, and information retrieval. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For example, the word pair mason/stone is analogous to the pair carpenter/wood; the relations between mason and stone are highly similar to the relations between carpenter and wood. Past work on semantic similarity measures has mainly been concerned with attributional similarity. For instance, Latent Semantic Analysis (LSA) can measure the degree of similarity between two words, but not between two relations. Recently the Vector Space Model (VSM) of information retrieval has been adapted to the task of measuring relational similarity, achieving a score of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the VSM approach, the relation between a pair of words is characterized by a vector of frequencies of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1) the patterns are derived automatically from the corpus (they are not predefined), (2) the Singular Value Decomposition (SVD) is used to smooth the frequency data (it is also used this way in LSA), and (3) automatically generated synonyms are used to explore reformulations of the word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the average human score of 57%. On the related problem of classifying noun-modifier relations, LRA achieves similar gains over the VSM, while using a smaller corpus
    • …
    corecore