5,071 research outputs found

    An Efficient Cache Organization for On-Chip Multiprocessor Networks

    Get PDF
    To meet the growing computation-intensive applications and the needs of low-power, high-performance systems, the number of computing resources in single-chip has enormously increased. By adding many computing resources to build a system in System-on-Chip, its interconnection between each other becomes another challenging issue. In most System-on-Chip applications, a shared bus interconnection which needs an arbitration logic to serialize several bus access requests, is adopted to communicate with each integrated processing unit because of its low-cost and simple control characteristics. This paper focuses on the interconnection design issues of area, power and performance of chip multi-processors with shared cache memory. It shows that having shared cache memory contributes to the performance improvement, however, typical interconnection between cores and the shared cache using crossbar occupies most of the chip area, consumes a lot of power and does not scale efficiently with increased number of cores. New interconnection mechanisms are needed to address these issues. This paper proposes an architectural paradigm in an attempt to gain the advantages of having shared cache with the avoidance of penalty imposed by the crossbar interconnect. The proposed architecture achieves smaller area occupation allowing more space to add additional cache memory. It also reduces power consumption compared to the existing crossbar architecture. Furthermore, the paper presents a modified cache coherence algorithm called Tuned-MESI. It is based on the typical MESI cache coherence algorithm however it is tuned and tailored for the suggested architecture. The achieved results of the conducted simulated experiments show that the developed architecture produces less broadcast operations compared to the typical algorithm

    PARALLEL OVERLOADED CDMA CROSSBAR FOR NETWORK ON CHIP

    Get PDF
    For high performance of Network on Chip (NoC), Code Division Multiple Access (CDMA) technique is used recently due to its fixed communication delay, reduced area utilisation and low power consumption. The CDMA system uses Walsh based spreading code which improves the bandwidth efficiency. On the contrary, it is not effective when the number of nodes present in the system increases. Overloaded CDMA (OCDMA) is presented for such large network systems. In this paper, OCDMA crossbar is modified and advanced with parallel encoding and decoding operation using orthogonal gold codes for improving the speed of crossbar thereby obtaining high performance in NoC switch. A modified crossbar consisting of extra processing elements is used to enhance the performance of NoC based System on Chip (SoC) system. This work is simulated on Xilinx tool and implemented in Vertex-6 (XC6VLX760) Field Programmable Gate Array (FPGA) device. The proposed work is implemented for four ports, eight ports and sixteen ports with deterministic X-Y routing algorithm in 3 3 NoC design with mesh topology. This NoC switch shows 9.79% improvement in delay and shows 20.76% improvement in power consumption when compared to the existing CDMA NoCs for 8 bit data packet

    FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture

    Full text link
    Neural Network (NN) accelerators with emerging ReRAM (resistive random access memory) technologies have been investigated as one of the promising solutions to address the \textit{memory wall} challenge, due to the unique capability of \textit{processing-in-memory} within ReRAM-crossbar-based processing elements (PEs). However, the high efficiency and high density advantages of ReRAM have not been fully utilized due to the huge communication demands among PEs and the overhead of peripheral circuits. In this paper, we propose a full system stack solution, composed of a reconfigurable architecture design, Field Programmable Synapse Array (FPSA) and its software system including neural synthesizer, temporal-to-spatial mapper, and placement & routing. We highly leverage the software system to make the hardware design compact and efficient. To satisfy the high-performance communication demand, we optimize it with a reconfigurable routing architecture and the placement & routing tool. To improve the computational density, we greatly simplify the PE circuit with the spiking schema and then adopt neural synthesizer to enable the high density computation-resources to support different kinds of NN operations. In addition, we provide spiking memory blocks (SMBs) and configurable logic blocks (CLBs) in hardware and leverage the temporal-to-spatial mapper to utilize them to balance the storage and computation requirements of NN. Owing to the end-to-end software system, we can efficiently deploy existing deep neural networks to FPSA. Evaluations show that, compared to one of state-of-the-art ReRAM-based NN accelerators, PRIME, the computational density of FPSA improves by 31x; for representative NNs, its inference performance can achieve up to 1000x speedup.Comment: Accepted by ASPLOS 201

    Binary Weighted Memristive Analog Deep Neural Network for Near-Sensor Edge Processing

    Full text link
    The memristive crossbar aims to implement analog weighted neural network, however, the realistic implementation of such crossbar arrays is not possible due to limited switching states of memristive devices. In this work, we propose the design of an analog deep neural network with binary weight update through backpropagation algorithm using binary state memristive devices. We show that such networks can be successfully used for image processing task and has the advantage of lower power consumption and small on-chip area in comparison with digital counterparts. The proposed network was benchmarked for MNIST handwritten digits recognition achieving an accuracy of approximately 90%

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Spatio-temporal Learning with Arrays of Analog Nanosynapses

    Full text link
    Emerging nanodevices such as resistive memories are being considered for hardware realizations of a variety of artificial neural networks (ANNs), including highly promising online variants of the learning approaches known as reservoir computing (RC) and the extreme learning machine (ELM). We propose an RC/ELM inspired learning system built with nanosynapses that performs both on-chip projection and regression operations. To address time-dynamic tasks, the hidden neurons of our system perform spatio-temporal integration and can be further enhanced with variable sampling or multiple activation windows. We detail the system and show its use in conjunction with a highly analog nanosynapse device on a standard task with intrinsic timing dynamics- the TI-46 battery of spoken digits. The system achieves nearly perfect (99%) accuracy at sufficient hidden layer size, which compares favorably with software results. In addition, the model is extended to a larger dataset, the MNIST database of handwritten digits. By translating the database into the time domain and using variable integration windows, up to 95% classification accuracy is achieved. In addition to an intrinsically low-power programming style, the proposed architecture learns very quickly and can easily be converted into a spiking system with negligible loss in performance- all features that confer significant energy efficiency.Comment: 6 pages, 3 figures. Presented at 2017 IEEE/ACM Symposium on Nanoscale architectures (NANOARCH
    corecore