1,325,970 research outputs found
High performance structures
Materials selection, structural geometry, proof testing and statistical screening, prestressing, and system energy as tools for designing optimum trusses and other high performance structure
Improved high-performance shock tube
Mylar diaphragms in shock tubes are a major improvement over steel diaphragms. Other improvements include: better electrode design; improved flow by opening the throat and removing all constrictions; and improved driver geometry by optimizing volume and shape
High-performance planar nanoscale dielectric capacitors
We propose a model for planar nanoscale dielectric capacitor consisting of a
single layer, insulating hexagonal boron nitride (BN) stripe placed between two
metallic graphene stripes, all forming commensurately a single atomic plane.
First-principles density functional calculations on these nanoscale capacitors
for different levels of charging and different widths of graphene - BN stripes
mark high gravimetric capacitance values, which are comparable to those of
supercapacitors made from other carbon based materials. Present nanocapacitor
model allows the fabrication of series, parallel and mixed combinations which
offer potential applications in 2D flexible nanoelectronics, energy storage and
heat-pressure sensing systems.Comment: Published version in PR
High performance polymer development
The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications
High performance sapphire windows
High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire
High performance ammonium nitrate propellant
A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine
- …
