854 research outputs found

    High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids

    Get PDF
    We present a high-order particle-in-cell (PIC) algorithm for the simulation of kinetic plasmas dynamics. The core of the algorithm utilizes an unstructured grid discontinuous Galerkin Maxwell field solver combining high-order accuracy with geometric flexibility. We introduce algorithms in the Lagrangian framework that preserve the favorable properties of the field solver in the PIC solver. Fast full-order interpolation and effective search algorithms are used for tracking individual particles on the general grid and smooth particle shape functions are introduced to ensure low noise in the charge and current density. A pre-computed levelset distance function is employed to represent the geometry and facilitates complex particle-boundary interaction. To enforce charge conservation we consider two different techniques, one based on projection and one on hyperbolic cleaning. Both are found to work well, although the latter is found be too expensive when used with explicit time integration. Examples of simple plasma phenomena, e.g., plasma waves, instabilities, and Landau damping are shown to agree well with theoretical predictions and/or results found by other computational methods. We also discuss generic well known problems such as numerical Cherenkov radiation and grid heating before presenting a few two-dimensional tests, showing the potential of the current method to handle fully relativistic plasma dynamics in complex geometries. 2005 Elsevier Inc. All rights reserved

    High Order Cell-Centered Lagrangian-Type Finite Volume Schemes with Time-Accurate Local Time Stepping on Unstructured Triangular Meshes

    Get PDF
    We present a novel cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume scheme on unstructured triangular meshes that is high order accurate in space and time and that also allows for time-accurate local time stepping (LTS). The new scheme uses the following basic ingredients: a high order WENO reconstruction in space on unstructured meshes, an element-local high-order accurate space-time Galerkin predictor that performs the time evolution of the reconstructed polynomials within each element, the computation of numerical ALE fluxes at the moving element interfaces through approximate Riemann solvers, and a one-step finite volume scheme for the time update which is directly based on the integral form of the conservation equations in space-time. The inclusion of the LTS algorithm requires a number of crucial extensions, such as a proper scheduling criterion for the time update of each element and for each node; a virtual projection of the elements contained in the reconstruction stencils of the element that has to perform the WENO reconstruction; and the proper computation of the fluxes through the space-time boundary surfaces that will inevitably contain hanging nodes in time due to the LTS algorithm. We have validated our new unstructured Lagrangian LTS approach over a wide sample of test cases solving the Euler equations of compressible gasdynamics in two space dimensions, including shock tube problems, cylindrical explosion problems, as well as specific tests typically adopted in Lagrangian calculations, such as the Kidder and the Saltzman problem. When compared to the traditional global time stepping (GTS) method, the newly proposed LTS algorithm allows to reduce the number of element updates in a given simulation by a factor that may depend on the complexity of the dynamics, but which can be as large as 4.7.Comment: 31 pages, 13 figure

    Energy-conserving discontinuous Galerkin methods for the Vlasov-Amp\`{e}re system

    Full text link
    In this paper, we propose energy-conserving numerical schemes for the Vlasov-Amp\`{e}re (VA) systems. The VA system is a model used to describe the evolution of probability density function of charged particles under self consistent electric field in plasmas. It conserves many physical quantities, including the total energy which is comprised of the kinetic and electric energy. Unlike the total particle number conservation, the total energy conservation is challenging to achieve. For simulations in longer time ranges, negligence of this fact could cause unphysical results, such as plasma self heating or cooling. In this paper, we develop the first Eulerian solvers that can preserve fully discrete total energy conservation. The main components of our solvers include explicit or implicit energy-conserving temporal discretizations, an energy-conserving operator splitting for the VA equation and discontinuous Galerkin finite element methods for the spatial discretizations. We validate our schemes by rigorous derivations and benchmark numerical examples such as Landau damping, two-stream instability and bump-on-tail instability

    High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows

    Full text link
    In this article we present the first better than second order accurate unstructured Lagrangian-type one-step WENO finite volume scheme for the solution of hyperbolic partial differential equations with non-conservative products. The method achieves high order of accuracy in space together with essentially non-oscillatory behavior using a nonlinear WENO reconstruction operator on unstructured triangular meshes. High order accuracy in time is obtained via a local Lagrangian space-time Galerkin predictor method that evolves the spatial reconstruction polynomials in time within each element. The final one-step finite volume scheme is derived by integration over a moving space-time control volume, where the non-conservative products are treated by a path-conservative approach that defines the jump terms on the element boundaries. The entire method is formulated as an Arbitrary-Lagrangian-Eulerian (ALE) method, where the mesh velocity can be chosen independently of the fluid velocity. The new scheme is applied to the full seven-equation Baer-Nunziato model of compressible multi-phase flows in two space dimensions. The use of a Lagrangian approach allows an excellent resolution of the solid contact and the resolution of jumps in the volume fraction. The high order of accuracy of the scheme in space and time is confirmed via a numerical convergence study. Finally, the proposed method is also applied to a reduced version of the compressible Baer-Nunziato model for the simulation of free surface water waves in moving domains. In particular, the phenomenon of sloshing is studied in a moving water tank and comparisons with experimental data are provided

    Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes

    Full text link
    In this article we present a new class of high order accurate Arbitrary-Eulerian-Lagrangian (ALE) one-step WENO finite volume schemes for solving nonlinear hyperbolic systems of conservation laws on moving two dimensional unstructured triangular meshes. A WENO reconstruction algorithm is used to achieve high order accuracy in space and a high order one-step time discretization is achieved by using the local space-time Galerkin predictor. For that purpose, a new element--local weak formulation of the governing PDE is adopted on moving space--time elements. The space-time basis and test functions are obtained considering Lagrange interpolation polynomials passing through a predefined set of nodes. Moreover, a polynomial mapping defined by the same local space-time basis functions as the weak solution of the PDE is used to map the moving physical space-time element onto a space-time reference element. To maintain algorithmic simplicity, the final ALE one-step finite volume scheme uses moving triangular meshes with straight edges. This is possible in the ALE framework, which allows a local mesh velocity that is different from the local fluid velocity. We present numerical convergence rates for the schemes presented in this paper up to sixth order of accuracy in space and time and show some classical numerical test problems for the two-dimensional Euler equations of compressible gas dynamics.Comment: Accepted by "Communications in Computational Physics
    • …
    corecore