1,576 research outputs found

    Allen-Cahn and Cahn-Hilliard-like equations for dissipative dynamics of saturated porous media

    Full text link
    We consider a saturated porous medium in the regime of solid-fluid segregation under an applied pressure on the solid constituent. We prove that, depending on the dissipation mechanism, the dynamics is described either by a Cahn-Hilliard or by an Allen-Cahn-like equation. More precisely, when the dissipation is modeled via the Darcy law we find that, for small deformation of the solid and small variations of the fluid density, the evolution equation is very similar to the Cahn-Hilliard equation. On the other hand, when only the Stokes dissipation term is considered, we find that the evolution is governed by an Allen-Cahn-like equation. We use this theory to describe the formation of interfaces inside porous media. We consider a recently developed model proposed to study the solid-liquid segregation in consolidation and we are able to fully describe the formation of an interface between the fluid-rich and the fluid-poor phase

    Phase Separation Dynamics in Isotropic Ion-Intercalation Particles

    Full text link
    Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to three distinct phase regions. In order to solve the fourth-order nonlinear CHR initial-boundary-value problem, a control-volume discretization is developed in spherical coordinates. The basic physics are illustrated by simulating many representative cases, including a simple model of the popular cathode material, lithium iron phosphate (neglecting crystal anisotropy and coherency strain). Analytical approximations are also derived for the voltage plateau as a function of the applied current
    • …
    corecore