4 research outputs found

    Multilevel Motion Planning: A Fiber Bundle Formulation

    Full text link
    Motion planning problems involving high-dimensional state spaces can often be solved significantly faster by using multilevel abstractions. While there are various ways to formally capture multilevel abstractions, we formulate them in terms of fiber bundles, which allows us to concisely describe and derive novel algorithms in terms of bundle restrictions and bundle sections. Fiber bundles essentially describe lower-dimensional projections of the state space using local product spaces. Given such a structure and a corresponding admissible constraint function, we can develop highly efficient and optimal search-based motion planning methods for high-dimensional state spaces. Our contributions are the following: We first introduce the terminology of fiber bundles, in particular the notion of restrictions and sections. Second, we use the notion of restrictions and sections to develop novel multilevel motion planning algorithms, which we call QRRT* and QMP*. We show these algorithms to be probabilistically complete and almost-surely asymptotically optimal. Third, we develop a novel recursive path section method based on an L1 interpolation over path restrictions, which we use to quickly find feasible path sections. And fourth, we evaluate all novel algorithms against all available OMPL algorithms on benchmarks of eight challenging environments ranging from 21 to 100 degrees of freedom, including multiple robots and nonholonomic constraints. Our findings support the efficiency of our novel algorithms and the benefit of exploiting multilevel abstractions using the terminology of fiber bundles.Comment: Submitted to IJR

    Data Analysis Methods using Persistence Diagrams

    Get PDF
    In recent years, persistent homology techniques have been used to study data and dynamical systems. Using these techniques, information about the shape and geometry of the data and systems leads to important information regarding the periodicity, bistability, and chaos of the underlying systems. In this thesis, we study all aspects of the application of persistent homology to data analysis. In particular, we introduce a new distance on the space of persistence diagrams, and show that it is useful in detecting changes in geometry and topology, which is essential for the supervised learning problem. Moreover, we introduce a clustering framework directly on the space of persistence diagrams, leveraging the notion of Fréchet means. Finally, we engage persistent homology with stochastic filtering techniques. In doing so, we prove that there is a notion of stability between the topologies of the optimal particle filter path and the expected particle filter path, which demonstrates that this approach is well posed. In addition to these theoretical contributions, we provide benchmarks and simulations of the proposed techniques, demonstrating their usefulness to the field of data analysis
    corecore