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Abstract

In recent years, persistent homology techniques have been used to study data and dynamical

systems. Using these techniques, information about the shape and geometry of the data and

systems leads to important information regarding the periodicity, bistability, and chaos of

the underlying systems. In this thesis, we study all aspects of the application of persistent

homology to data analysis. In particular, we introduce a new distance on the space of

persistence diagrams, and show that it is useful in detecting changes in geometry and

topology, which is essential for the supervised learning problem. Moreover, we introduce

a clustering framework directly on the space of persistence diagrams, leveraging the notion

of Fréchet means. Finally, we engage persistent homology with stochastic filtering techniques.

In doing so, we prove that there is a notion of stability between the topologies of the

optimal particle filter path and the expected particle filter path, which demonstrates that this

approach is well posed. In addition to these theoretical contributions, we provide benchmarks

and simulations of the proposed techniques, demonstrating their usefulness to the field of

data analysis.
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Chapter 1

Introduction

In recent years, many signal analysis problems in defense, medicine, computer vision, and

signal processing have seen machine learning and data centric approaches to solutions Garrett

et al. [40], Sherwin and Sajda [78], Azimi-Sadjadi et al. [7], Dhanalakshmi et al. [28]. Garrett

et al. [40] use support vector machines, neural networks, and linear discriminant analysis

alongside with features derived from Fourier analysis to classify electroencephalogram and

electrocardiogram (EE and EKG) signals. In Sherwin and Sajda [78], the researchers use

anomaly detections techniques on EEG signals to detect a difference between musical expects

and nonexperts. Azimi-Sadjadi et al. [7] and Dhanalakshmi et al. [28] attempt to classify

audio signals using support vector machines and other machine learning techniques.

These types of supervised and unsupervised learning techniques are helpful for specific

tasks such as threat detection, disease detection, object recognition, and pattern recognition

Srinivas et al. [79], Zhang et al. [89]. Though these classical machine learning approaches

produce sufficient results on certain types of data, they rely on extracting features from the

data, usually in the form of Fourier coefficients Xu et al. [88], Sahidullah and Saha [72].

While this type of feature extraction is commonplace, this type of method doesn’t take into

account the shape and geometry of the underlying data, properties that can be important to

the identification of important signal features such periodicity and chaos Venkataraman et al.

[84], Perea and Harer [65]. Due to this, even when an algorithm based on these techniques

produces good accuracy, the resulting algorithm can be difficult to interpret.
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In order to solve this issue, researchers have taken to utilizing topology to study data

in a direction commonly known as topological data analysis Carlsson [21], Carlsson et al.

[20]. This type of technique offers a new way to look at data. By treating the underlying

dataset as a point cloud and analyzing its topology, researchers are able to draw conclusions

about the data set. This type of analysis has seen successful use in the context of supervised

machine learning in the fields of medicine, social sciences, and text recognition Nicolau et al.

[63], Adcock et al. [2], Lum et al. [53]. For example, in Adcock et al. [2], the researchers

extract relevant topological features in conjunction with support vector machines to classify

written digits. Due to the intuitive nature of topological data analysis, it is possible to detect

properties such as periodicity directly for classification purposes, even when the periodicity

may differ widely with respect to period and shape Perea et al. [66].

In terms of signal analysis, the signal is first embedded into a higher dimension using

delay embedding theory Takens [81]. The parameters and robustness of this type of delay

are well studied. In particular, it has been shown that there are optimal parameters for

reconstructing the phase space of the signal for certain types of signals Perea and Harer [65].

Moreover, many studies have empirically shown that the appropriate delay parameter can be

estimated by minimizing the autocorrelation of the signal Venkataraman et al. [84], Emrani

et al. [35].

Once the signal has been embedded into a k-dimensional point cloud, a topological

object is created via one of several different techniques Edelsbrunner and Harer [32]. These

techniques, such as Čech Complex and Vietoris-Rips Complex, are built through constructing

relevant open sets (in our case, open spheres) around each data point, and using properties

regarding their intersection to derive a simplicial complex. This simplicial complex has

topological properties regarding the amount of connected components, holes, and voids it

contains. By varying a scale parameter of the open sets in these constructions, a sequence

of simplicial complexes are obtained for a grid of growing scale, leading to information

about how long (with respect to scale) objects such as holes and connected components

persist. This persistence information is vital for classification and clustering, and contains

information regarding the shape of the underlying data Venkataraman et al. [84], Pereira and
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de Mello [67], Marchese and Maroulas [55]. This topological information is then summarized

in a persistence diagram.

These persistence diagrams, which can be thought of as a collection of points in R2,

capture important topological and geometric information about the underlying signal Perea

et al. [66], Venkataraman et al. [84], Emrani et al. [35]. A point (x, y) in the persistence

diagram indicates a topological feature born at scale x and persisting until scale y. For

example, a 0-dimensional topological feature is a connected component or cluster, a 1-

dimensional topological feature is a hole, and so on. The scale y indicates when this

hole fills in. The persistence of these topological features is crucial in determining the

behavior of the underlying signal and the dynamic generating it. For example, a very

persistent 1-dimensional hole corresponds to periodicity in the dynamic, a very persistent

2-dimensional hole may correspond to chaos in the system Emrani et al. [35], Venkataraman

et al. [84], Edelsbrunner and Harer [32], Perea and Harer [65]. Small persistence, on the

other hand, can indicate difference in the geometry of the underlying system. An example

of a persistence diagram can be seen in Fig. 1.1.

Figure 1.1: An example of a persistence diagram Mischaikow and Nanda [61].

Persistence diagrams have recently seen intense active research, including significant

successful effort toward facilitating previously challenging computations with them; for

example, Wasserstein distance in Kerber et al. [50] or the creation of persistence diagrams

with packages such as Dionysus Morozov [62] and Ripser Bauer [10] take advantage of certain
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properties of simplicial complexes Chen and Kerber [24]. Moreover, various approaches to

define analogues of traditional statistics have been presented. For example, the relationship

between persistence diagrams and the noise of the underlying system is studied in Adler

et al. [3]. This work demonstrates the lack of noise-induced topological features for large

enough feature death value (scale) under Gaussian noise as the number of sample points

goes to infinity, indicating the importance of small persistence points in handling noise in

the system. The studies Mileyko et al. [59], Turner et al. [83] introduce notions of mean

and variance for finite collections of persistence diagrams. The work in Emmett et al. [34]

further summarizes the data by extracting kernel density estimates for the distribution of

birth and death times, which in turn produces a very rough marginal distribution of a

certain homological dimension. This method loses information about individual features in

persistence diagrams. A notion of confidence set for persistence diagrams is introduced in

Fasy et al. [37], and in Bobrowski et al. [15], kernel densities are introduced for the purposes

of data analysis, but the distribution of the underlying persistence diagrams is not explored.

Some researchers use these persistence diagrams for classification by first extracting

features from them and subsequently using these features in classical machine learning

algorithms such as support vector machines and random forests Pereira and de Mello

[67], Emrani et al. [35], Zhu [91]. For example, Emrani et al. [35] extracts information

regarding the most persistent hole in the data, and uses this alone to classify breathing

signals. However, this type of approach necessarily loses information in the persistence

diagram and must make assumptions about which type of features are important. To address

this issue, it is beneficial to use the entire persistence diagram in the learning process.

Venkataraman et al. [84] introduces a 1-Nearest Neighbor classifier using the Wasserstein

distance to analyze the classification problem on an action recognition dataset. While this

may be viable for classification, the clustering problem in this framework remains unexplored.

In Chapter 3, we present a direct solution to this problem by introducing a novel clustering

algorithm on the space of persistence diagrams utilizing the notion of Fréchet means, a

generalization of centroids. Moreover, we present results for this clustering scheme and

compare to signal feature and signal distance based methods in Chapter 4.
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While the Wasserstein distance may be ideal in some situations, it is important to note

that it loses information about the cardinality of the persistence diagrams and the behavior

of small persistence points, that contain relevant information regarding the geometry of the

underlying data. We propose a new distance on the space of persistence diagrams taking this

into account. This distance is inspired by the study of point processes and characterizes the

two important notions of persistence diagram distance - set membership and point location

Schuhmacher et al. [75]. Moreover, we explore the notion of means of persistence diagrams

under this new distance. Because we cannot simply compute means of persistence diagrams

in the traditional sense, we consider a more general Fréchet mean. We show that this mean

is well defined and that it is guaranteed to exist in most real data situations. Theoretical

underpinnings for this distance and its corresponding Fréchet mean are presented in Chapter

3. Moreover, classification benchmark results on real and synthetic datasets are presented

in Chapter 4.

Finally, we will draw a connection between these topology based data analysis schemes

and stochastic filtering techniques. In some situations, data is observed in a lower dimension

than that of the true dynamics, yet we would still like to perform inference on the original

space. In order to take this Hidden Markov Mode problem, we must first estimate the true

state of the system using the observed state. This is known as the filtering (or smoothing)

problem Cappé et al. [19], Xiong [87], Maroulas and Xiong [58]. We will consider the

particle filter, a certain type of filtering algorithm that makes very loose assumptions on

the underlying systems dynamics and noise Gordon et al. [42], Ren et al. [70], Doucet et al.

[29]. This filtering technique works through drawing many samples, called particles, from

the prior probability distribution of the true state, and propagating these particles through

the dynamics in order to estimate the posterior distribution of the underlying data, given the

available observations. This type of filtering technique has seen applications in many fields

such as target tracking and biology Maroulas and Nebenführ [57]. In particular, we show

in Chapter 5 that the topological information contained in the optimal particle filter path

and the expected particle filter path are similar. This shows that observing the persistent

homology of the mean particle filter path is well posed, in the sense that this persistent

homology is close to the persistent homology of the optimal path. Moreover, we provide
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simulations demonstrating the connection between persistent homology and particle filtering

techniques.

Via the techniques and results explained above, this dissertation provides a holistic

analysis of the learning problem on the data space of persistence diagrams. We consider

both supervised and unsupervised learning, providing a framework to researchers in many

different areas and applications. In particular, our unsupervised learning framework in

Chapter 3 is the first of its kind on the space of persistence diagrams, and opens the way

for a new way to study signals and dynamical systems. Additionally, through the new

distance introduced in Chapter 3, we provide a concrete way to measure small changes in

the geometry of dynamical systems that have been hinted at in previous research, but not

properly formalized. We show that these small changes in geometry are essential to the

classification problem. These theoretical algorithms are implemented and benchmarked in

Chapter 4 against real and synthetic datasets. Moreover, we draw a connections between

analyzing samples of a dynamical system and analyzing an estimate for the ground truth of

the system itself, through the stability result and simulations in Chapter 5.
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Chapter 2

Computational Topology

Preliminaries

This chapter will introduce computational topology preliminaries that will be needed for

the contributions discussed in later chapters. An interested reader can find a more detailed

introduction to the field of computational topology in Edelsbrunner and Harer [32]. In

order to perform topological analysis on a signal, it is first necessary to transform the signal

into a higher dimension through Takens’ delay embedding Takens [81]. First, we give some

topological preliminaries.

Definition 1. Two topological spaces T and H are homeomorphic if there is a continuous

bijection f : T → H such that f−1 : H → T is also continuous.

Definition 2. A d−dimensional manifold M is a topological space T such that for for every

point x ∈ T , there is a neighborhood around x homeomorphic to the open d−ball in Euclidean

space.

Definition 3. A map f : M → N between two manifolds is said to be a diffeomorphism if it

is differentiable and its inverse f−1 is differentiable. In general, if f is ` times differentiable

it is called a C` diffeomorphism.

Definition 4. A map f : T → H between topological spaces in an embedding if f gives a

homeomorphism between T and f(T ).
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Theorem 2.1 ([81]). Let M be a compact manifold of dimension d and let C2 denote

the space of functions which are twice differentiable and have continuous first and second

derivatives. For a C2 diffeomorphism φ : M → M and C2 function f : M → R, it is a

generic property that Φφ : M → R2m+1 given by

Φφ(x) = (f(x), f(φ(x)), ..., f(φ2m(x))) (2.1)

is an embedding.

Figure 2.1: Above we depict the signal (left) and its corresponding Taken’s delay embedding
(right) for τ = 10 and d = 3.

This result guarantees that for a correctly chosen Φ, we can recover the topology of the

underlying dynamical system by performing the embedding in Eq. (2.1). We choose Φ to be

a delay embedding. In particular, for a time-series f(t), given delay dimension d and delay

parameter τ we consider the map

f(t)→ (f(t), f(t+ τ), ..., f(t+ (d− 1)τ)) (2.2)

This type of delay embedding is widely used in the field of topological data analysis

Venkataraman et al. [84], Anirudh et al. [5], Zhang et al. [89], Perea et al. [66]. Moreover, the

parameters τ and d have been well studied in order to guarantee the underlying topology

will be recovered Perea and Harer [65]. An example of this embedding performed on a
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signal for d = 3 and τ = 10 can be seen in Figure 2.1. Note that the resulting object is

a d−dimensional point cloud P . At a glance, it is obvious that this object has topological

and geometric properties, but it is not immediately clear how these can be quantified. For

example, examining the topology of the points directly leads to a trivial topology on the

space, as they are a set of separate discrete points. However, there is an obvious torus

shape that we wish to recover, including a prominent hole in the center. Notice that if we

keep track of the points in our delay embedding, we see that this large hole is a result of

the periodicity of the signal; this important observation will be expanded upon later. To

fully understand this point cloud’s topology, we require persistent homology theory, which

will allow us to transform this set of discrete points into a topological summary capturing

information about the perceived torus shape and hole in the data.

We now give a brief synopsis of the topological theory required in order to build a family

of topological objects from a point cloud of data. Once this family is created, a persistence

diagram is created to summarize the information.

Definition 5. A k−dimensional simplex σ is a set of (k+ 1) vertex points, {pi}k+1
i=1 , and

all convex combinations of these points:

σ =

{
k+1∑
i=1

αipi :
k+1∑
i=1

αi = 1 and 0 ≤ αi ≤ 1

}
.

The convex combination of any subset of {pi}k+1
i=1 is also a simplex, and is called a face of

σ.

Intuitively, a 0−simplex is a point, a 1−simplex is a line, a 2−simplex is a triangle, et

cetera.

Definition 6. An (abstract) simplicial complex is a collection of simplices G such that

whenever G contains a simplex σ, G also contains all the faces of σ.

When considering an embedding of an abstract simplicial complex we also require that

the intersection of any two simplices is a face of both simplices. For example, two triangles

must intersect at a common vertex, a common edge, or not at all. This simplicial complex

can be thought of as a higher dimensional generalization of a graph. We observe that this
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Figure 2.2: An example of a 2−dimensional simplicial complex.

simplicial complex in Figure 2.2 has certain properties. For example, notice that is has two

distinct connected components - one containing all of the points in the “cycle”, and one

containing just one point off to the side. Moreover, notice that the “cycle” forms a one

dimensional hole. Our goal is to capture this topological information. In order to do this

we must understand the relationship between boundaries and edges in a simplicial complex

by considering objects called chain groups. We fix a simplicial complex S and an integral

domain I.

Definition 7. For a field A and integer j ≥ 0, a formal sum of j−dimensional simplices is

an object of the form
∑
ajσj, where aj ∈ A and σj is a j−simplex.

Definition 8. The jth chain group Cj(K) is the module of formal sums of the j−dimensional

simplices in S with coefficients in I.

When the simplicial complex K is obvious from context or not needed, we may simply

refer to Cj(K) as Cj. By considering a sequence of maps between these chain groups, we

obtain information about the structure of S.

Definition 9. The jth boundary map ∂j : Cj → Cj−1 defined by

∂j(p0, ..., pj) =

j∑
i=0

(−1)i(p0, ..., pi−1, pi+1, ..., pj),

where a j-simplex is mapped to the alternating sum of its j − 1−dimensional faces.

We call formal sums of simplicial complexes j−chains for homological dimension j.

Moreover, define the boundary of a j−chain to be the formal sum of its j − 1-dimensional

faces. The following result holds Edelsbrunner and Harer [32].
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Lemma 2.1.1. ∂j+1 ◦ ∂j = 0 for all integers j ≥ 0.

Thus we have a chain complex C0
∂1←− C1

∂2←− ...
∂`←− C` such that Im(∂j+1) ⊆ ker(∂j),

where ` is the maximum dimension simplex in S, and Im and ker are the image and kernel

of the maps.

Definition 10. A subgroup H of a group G is said to be normal if for all h ∈ H and g ∈ G,

ghg−1 ∈ H.

Definition 11. Let H be a subgroup of a group G. The left cosets of H in G is the set

gH = {gh : h ∈ H}.

Definition 12. For a group G and a normal subgroup H, define the quotient group G/H to

be the set of cosets of H in G.

Given this chain complex and Lemma 2.1.1, it is natural to consider the behavior of the

quotient group ker(∂j)/Im(∂j+1).

Definition 13. The jth homology module is defined as the quotient group Hj(S) =

ker(∂j)/Im(∂j+1). The jth Betti number βj is the rank of the free part of Hj(K).

We now examine each of these groups in order to understand them in more depth. Fix a

homological dimension k and consider ker(∂k). This group contains all chains q in Ck such

that ∂kq = 0. We call such a chain a k-cycle. Now consider Im(∂k). These are all chains that

are k− 1-boundaries of k-chains. We finally come to Hj(S), the group of cycles modded out

by boundaries. This group can be thought of as objects that cycles (in the kernel), but are not

boundaries (modding out by the kernel). Thus, this corresponds to holes that are not filled

in. This contains information regarding structure of S. In particular, the dimension of Hj(S)

over I is the number of j−dimensional holes in S. For example, for j = 0, the dimension of

H0(S), dim(H0(S)) = β0, is the number of connected components in S. For j = 1, it is the

number of 1−dimensional holes. In Figure 2.2, the dimension of H0(S), dim(H0(S)) = β0,

is two (two connected components), the dimension of H1(S), dim(H1(S) = β1, is one (one

1-dimensional hole), and βj is 0 for all j ≥ 1. By constructing these boundary maps for a

given simplicial complex, we are able to compute the Betti numbers directly.
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Figure 2.3: A cartoon of the simplicial complex K considered for this example.

Example 1. Consider the simplicial complex depicted in Fig. 2.3. Notice we only have up

to 2−simplicies, yielding the chain complex

{0} 0←− C0
∂1←− C1

∂2←− C2
∂3←− C3 = {0}.

We write the simplicial complex as

K = {(1), (2), (3), (4), (5), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (1, 2, 3), (2, 3, 4)}

= {v1, v2, v3, v4, v5, e1, e2, e3, e4, e5, e6, e7, f1, f2}

and use this simplex ordering to choose bases for each chain group in order to describe each

boundary map as a matrix, as shown below:

∂1 =



−1 −1 0 0 0 0 0

1 0 −1 −1 0 0 0

0 1 1 0 −1 −1 0

0 0 0 1 1 0 −1

0 0 0 0 0 1 1


, ∂2 =



1 0

−1 1

1 −1

0 1

0 0

0 0

0 0


.

This organized presentation of the boundary maps enables direct computation of Betti

numbers. In this case, ker(∂1) is 3-D, im(∂2) is 2-D, and so H1 is 1-D and β1 = 1. Here,

H1 is generated by the cycle (3, 4) + (4, 5) + (5, 3) =
[
0 0 0 0 1 −1 1

]T
. Similarly, H0
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is 1-D and β0 = 1, generated by the lone connected component (1) + (2) + (3) + (4) + (5) =[
1 1 1 1 1

]T
.

With the computational topology theory established, we are now ready to analyze the

point cloud object in Figure 2.1. We need a method for transforming a cloud of points to a

family of simplicial complexes. There are several constructions to this end.

Definition 14. For some topological space T , and some covering of T , U = {Uα}α∈A for

some indexing set A, the Čech complex C(U) is the simplicial complex whose vertex set is A

and a set of points {α0, ..., αk} is a simplex if and only if
⋂k
i=0 Uαi 6= ∅.

For example, in Definition 14, consider T to be a collection of points in Rn and the

covering U to be spheres of radius ε/2 around each point. In this case, we use the notation

Cε(T ) for the Čech complex. With this construction, we simply put a k-simplex between

k + 1 points if their ε/2 radius spheres have a common nonempty intersection. Figure 2.4

shows an example of a Čech complex construction.

Definition 15. Given open sets Oi contained in T , the nerve N of T is an abstract simplicial

complex defined as N = {Oi ⊆ T |
⋂
Oi 6= ∅}

Definition 16. A homotopy between continuous functions f : T → H and g : T → H is a

continuous map γ : T × [0, 1] → H such that H(x, 0) = f and H(x, 1) = g. If this holds, f

and g are said to be homotopic.

Definition 17. Two topological spaces T and H are homotopy equivalent if there are

continuous maps f : T → H and g : H → T such that g ◦ f and f ◦ g are homotopic

to the identity.

This complex forms the nerve of T for a fixed radius ε. Precisely, the Nerve Theorem

conveys the connection between the Čech complex and the topology of T Hatcher [44],

Edelsbrunner and Harer [31], i.e. that the Čech complex and T have the similar topology in

some sense (homotopy equivalent). Thus, if we want to understand the space T , one needs to

study the topology of the corresponding Čech complex. However, due to the computational

limitations, sometimes we consider an approximation to the Čech complex, the Vietoris-Rips

complex.

13



Definition 18. The Vietoris-Rips complex of a finite subset S of a metric space T for some

ε is the simplicial complex with vertices S such that {p0, ..., pj} is a simplex if and only if

ρ(pi, pv) < ε for 0 ≤ i, v ≤ k, where ρ(·, ·) is the metric on T .

In contrast to the Čech complex, in the Vietoris-Rips complex a k−simplex is created

on points p0, ..., pk−1 when for each pair of vertices the balls around each pair of points

has nonempty intersection. These two constructions are related, in the sense that the Čech

complex can be approximated with the Vietoris-Rips complex. Consider a Čech complex for

a fixed radius ε/2 denoted Cε and a Vietoris-Rips complex for a fixed radius ε denoted V Rε.

Then the following approximation holds.

Lemma 2.1.2 (Edelsbrunner and Harer [32]). For a fixed radius ε, we have that Cε ⊆ V Rε ⊆

C2ε

Lemma 2.1.2 says that the Vietoris-Rips complex serves as an approximation to the

Čech complex, and so we may consider the Vietoris-Rips complex in practice, as it is easier

to compute. Observing Definitions 14 and 18 requires a fixed value of ε. However, it is

relevant for the sake of classification to consider what these complexes look like for an

increasing sequence of such ε values. In particular, we are able to track the presence of

n−dimensional voids and connected components as we vary the radius ε, yielding invaluable

information about the topology and geometry of the underlying data. In particular, consider

an increasing sequence ε1 < ... < εj such that we have an associated sequence of nested

simplicial complexes, Cε1 ⊆ ... ⊆ Cεj . This sequence of complexes is called a filtration

Edelsbrunner and Harer [31]. For each simplicial complex Cεi , there are associated homology

groups Hn(Cεi). We consider these homology groups over the field Z2 = Z/2Z. In particular,

it is possible to keep track of topological features (such as connected components and k-

dimensional holes) as the radius ε changes.

Pertinent topological features such as connected components and holes, corresponding

to the Betti numbers for each simplex in the chosen filtration, are kept track of and it is

possible to see how long these topological features persist as ε grows. Of course, eventually

when the radius ε is large enough, all pairs of points will be within ε and there will be

one connected component and no voids. However, what is important is to monitor how
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(a)

(b)

(c)

Figure 2.4: The construction of Čech complexes (right) from the point cloud (left) for
varying epsilon: (a) ε = .25; (b) ε = .6; (c) ε = .8.
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these topological features change over increasing ε. We represent the changing topological

features in a chosen complex with a persistence diagram. Consider the complex and fix a

homological dimension to consider. For example, setting k = 0 corresponds to keeping track

of the connected components of the complex, i.e. β0. Suppose a connected component η is

“born” at time bη, and persists until time dη. The persistence diagram corresponding to a

Vietoris-Rips complex consists of birth-death points (bη, dη) for all η that exists for ε ∈ G.

Figure 2.5: Above we depict the signal (left), it’s Taken’s delay embedding (center), and
it’s persistent homology (right). Notice the long persistent element corresponding to the
cycle in the center of the point cloud.

Thus, a persistence diagram is a set of points {(b, d)|b, d ∈ R2 and d > b} where each

point corresponds to a topological feature in a corresponding family of simplicial complexes.

In particular, each point (b, d) denoted a topological features being born at radius b and

“dying” at radius d. Here, “dying” can be thought of as a homological feature getting filled

in with a lower dimensional simplex. The persistence of a feature is defined as d − b, and

refers to how “long” (with respect to radius) a topological feature persists before it is filled

in. For example, in Figure 2.5, by examining the point cloud in the center image, we expect

a hole to form at a relatively small radius and for this hole to persist for a long time. This

can be seen in the persistence diagram on the right at the point (.65, 7.9). Note that there is

a persistence diagram for each homological dimension k, which we combine onto one image.
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Chapter 3

Clustering and Classification

The problem of analyzing signals and implementing learning algorithms to perform inference

on them is a well studied field with many applications. These range from medical applications

involving EEG data Garrett et al. [40], Sherwin and Sajda [78] to acoustic signals with

military Azimi-Sadjadi et al. [7] and non-military applications Dhanalakshmi et al. [28].

Recently, topological techniques have been developed to offer a new way to analyze data

e.g. see Carlsson [21], Bubenik [16], Bampasidou and Gentimis [9], Xia and Wei [86], Robins

and Turner [71]. These techniques have been used in the field of machine learning, with

applications in medicine, social sciences, and text recognition Nicolau et al. [63], Adcock et al.

[2], Lum et al. [53]. In particular, topological data analysis techniques excel at analyzing

point clouds in Rd for some dimension d. Through the use of time-delay embeddings, it

is possible to transform the signal classification problem into a point cloud classification

problem. Inspired by their original use in reconstructing the phase-space of a dynamical

system Takens [81], this delay technique has been effectively used to combine topology and

statistics Seversky et al. [76]. Leveraging topological theory, the underlying topological

properties of the point cloud produced by this delay embedding are analyzed. Precisely, the

persistent homology of the point cloud is represented by a persistence diagram, which can

be thought of as a multiset of points in R2, where the (x, y) coordinates signify how long

topological properties of the data persist. In this chapter, we will discuss how this persistence

diagram can be used for classification and clustering.
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3.1 Clustering on the space of Persistence Diagrams

Clustering is the problem of dividing a dataset into some K number of groups based on

some measure of similarity [77]. In this section, we will assume that K is known a priori,

but we make no assumptions about the labels of persistence diagrams in the training set.

Using the underlying topology of the signal and the dynamic generating the signal can

give valuable insight into features vital for class differentiation. Although there has been

much work focused on extracting features from persistence diagrams for signal classification

or classifying directly on the space of persistence diagrams the same cannot be said for

clustering. In Pereira and de Mello [67], the authors transform signals into persistence

diagrams and subsequently extract features such as maximum persistence hole (maxi(di−bi)),

number of holes, and average lifetime (
∑
di−bi
n

) from persistence diagrams and proceed to use

these features to train a traditional clustering algorithm; while this is a first step to using

persistence diagrams in the clustering of time-series, these features give a very coarse estimate

of the persistence diagrams, and in turn give a summary of the persistence diagram, which

is already a topological summary. Though there have been studies focusing on clustering

and describing a high-dimensional dataset’s shape and topology using persistent homology

Lum et al. [54], Carlsson [21], the problem of time-series clustering directly on the space of

persistence diagrams remains unexplored.

For this reason, we instead focus on developing a clustering technique directly on the

space of persistence diagrams. In particular, our goal is to introduce a K−means type

algorithm on the space of persistence diagrams. In order to achieve this, we need to establish

a metric on the space of persistence diagrams, and a notion of “mean” or centers for the

persistence diagrams. These concepts are very general and require few assumptions. We

start by describing the space of persistence diagrams under a certain metric.

Definition 19. Given two persistence diagrams D1 and D2 and p > 1, define the p-

Wasserstein distance Wp(D1,D2) by

Wp(D1,D2) = (inf
γ

∑
x∈D1

||x− γ(x)||∞p)1/p, (3.1)
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where γ ranges over all bijections from D1 to D2, p is a fixed parameter, and ||z||∞ =

max(|z1|, ..., |zm|) for z ∈ Rm.

Definition 20. Given two persistence diagrams D1 and D2, define the Bottleneck distance

W∞(D1,D2) by

W∞(D1,D2) = inf
γ

sup
x∈D1

||x− γ(x)||∞, (3.2)

where γ ranges over all bijections from D1 to D2, and ||z||∞ = max(|z1|, ..., |zm|) for z ∈ Rm.

In the limit as p goes to infinity, the Wasserstein distance becomes the Bottleneck

distance. The Wasserstein distance measures how far off the best possible mapping from

D1 to D2 is over all points. In order to account for cardinality differences in the persistence

diagrams, ad hoc matching to the diagonal is allowed in order to ensure bijections γ between

D1 and D2 exist (in other words, any number of features with 0 persistence can be added as

needed).

It is important to note that the space of all finite persistence diagrams under the

Wasserstein distance is not complete Mileyko et al. [59]. For example, consider tn to be

the topological feature with tn = (bn, dn) = (0, 2−n) for n ∈ N, and Dn the persistence

diagram containing t1, ..., tn. Then Wp(Dn,Dn+`) <
1

2n+`
, and so this sequence is cauchy, but

the number of points will grow to infinitely as n → ∞, so this sequence does not have a

limit in the space. Due to this, when considering the space of persistence diagrams under

the Wasserstein distance, we must restrict the space as Pwass = {D|Wp(D,D0) <∞} where

D0 is the persistence diagram only containing the diagonal.

When introducing an algorithm of clustering, it is important to have a notion of center.

While it is not obvious how a set of persistence diagrams can be “averaged,” we consider the

Fréchet mean, which is a generalization of a centroid. Consider a probability measure D on

the space of (Pwass,B(Pwass)) where B(Pwass) is the Borel σ−algebra on Pwass such that

F
Wp

Pwass
(D1) =

∫
Pwass

Wp(D1,D2)2dD(D2) <∞, (3.3)

for all D1 ∈ Pwass.
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Definition 21. Given a probability space (Pwass,B(Pwass),D), the Fréchet variance of D is

V ar
Wp

D = inf
D∈Pwass

[F
Wp

Pwass
(D) =

∫
Pwass

Wp(D,D2)2dD(D2)], (3.4)

and the Fréchet expectation or Fréchet mean of D is

EWp(D) = {D|FWp

Pwass
(D) = V ar

Wp

D }. (3.5)

In [59], it was shown that the space of persistence diagrams Pwass admits Fréchet means

under certain types of probability distributions. In particular, this holds for the empirical

distribution over a finite set of persistence diagrams; we will be interested in discrete

probability distributions for a set {Di}Ti=1 of persistence diagrams. Consider the uniform

distribution 1
T

∑T
i=1 δDi over this set. Leveraging this theory, we propose the following

K − means type clustering algorithm. The set of Fréchet means for a sample diagram

is shown in Fig. 3.1.

Figure 3.1: Consider four persistence diagrams, with red points, black points, blue points,
and green points. We are interested in the Fréchet mean of the red persistence diagram and
the blue persistence diagram. Notice that both the green persistence diagram and the black
persistence diagram minimize Eq.(3.4).

Start with a dataset of persistence diagrams D = {Di}Ni=1 to be clustered, with a known

K a priori number of clusters. First, we will uniformly at random select persistence diagrams
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M
(0)
1 , ...,M

(0)
K from D without replacement. These persistence diagrams will act as initial

centroids for the algorithm. Then, for each persistence diagram Di ∈ D, assign a label l
(0)
i

according to which centroid persistence diagram it is closest too. At this point, for each

cluster 1 ≤ J ≤ K, there is a set of persistence diagrams Diags
(0)
J associated to it. Now,

in order to update the centers M
(0)
1 , ...,M

(0)
K , define M

(1)
J to be the Fréchet mean of the

diagrams in Diags
(0)
J . This process continues until the labels l

(t)
i = l

(t+1)
i for some iteration

t, for all 1 ≤ i ≤ N . Pseudo-code for this algorithm is presented in Alg. 1, and a single

iteration of the algorithm is shown in Fig. 3.2.

Algorithm 1 Clustering on the space of persistence diagrams using Fréchet means.

1: Input: Persistence Diagrams D = {Di}ni=1, number of clusters K, maxiter.
2: Training Phase
3: Initialize Centers
4: for j=1 to K do
5: Randomly initialize centroid diagram M

(0)
j for cluster j

6: count = 0
7: while Not Converged do
8: for i=1 to n do Assign Dxi label `

(t)
i where `

(t)
i = argmin1≤j≤K d(Dxi ,M

(t−1)
j )

9: for j=1 to K do Compute M
(t)
j = FréchetMean(Diags

(t−1)
J ) where Diags

(t−1)
J =

{Dxi|`
(t−1)
i = j}

10: count = count + 1
11: if `(t−1) = `(t) for all 1 ≤ i ≤ n OR count==maxiter then
12: Converged

13: Return {M (T )
j }Kj=1, {`(T )

i }Ni=1

In order to quantify the effectiveness of the clustering, we consider the associated cost

function to Algorithm 1:

G(Diags1, ..., DiagsK) = min
M1,...,MK

K∑
i=1

∑
Dj∈Diagsi

(Wp(Dj,Mi))
2 (3.6)

This cost function is known as the within-cluster sum of squares Shalev-Shwartz and Ben-

David [77], Hastie et al. [43]. In particular, it measures the total sum of squared distances

from each persistence diagram to its associated cluster centroid diagram. Of course, it is
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Figure 3.2: A cartoon demonstrating how Algorithm 1 works on a small dataset of
persistence diagrams.

not obvious that the labels will stop changing at some iteration t. The following result

guarantees that the algorithm converges to a (local) minimum.

Theorem 3.1. Algorithm 1 converges to a local minimum.

Proof. The algorithm only changes the value of G defined in Eqn. (3.6) at two steps - the

update of the Fréchet Means M and the update of the cluster assignments DiagsJ . We show

that in each of these updates, G cannot increase. First fix an iteration t ∈ N and Fréchet

Means M
(t)
1 , ...,M

(t)
K . We must show that

K∑
i=1

∑
Dj∈Diags

(t)
i

Wp(Dj,M
(t)
i )2 ≤

K∑
i=1

∑
Dj∈Diags

(t−1)
i

Wp(Dj,M
(t)
i )2 (3.7)

Eqn. (3.7) clearly holds given that the clusters Diags
(t)
i are assigned based on distance

to the closest mean M (t). It remains to show the objective function G of Eqn. (3.6) cannot

increase when we fix the labels and update the Fréchet Means. Let M
(t)
i be defined as
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the Fréchet mean of the elements of Diags
(t−1)
i . Precisely, M

(t)
i is a persistence diagram

minimizing ∑
Dj∈Diags

(t−1)
i

Wp(Dj,M
(t)
i )2

Thus, by this definition,

K∑
i=1

∑
Dj∈Diags

(t−1)
i

Wp(Dj,M
(t)
i )2 ≤

K∑
i=1

∑
Dj∈Diags

(t−1)
i

Wp(x,M
(t−1)
i )2

holds. Since the objective function of the algorithm cannot increase at either of the two

update steps, and there are only a finite number of possible labellings, the objective function

decreases to a local minimum.

Theorem 3.1 guarantees that the algorithm does not increase the cost of the objective

function at every iteration. Because there are only a finite number of permutations of the

labels, this guarantees convergence to some labeling which will not change under further

runs of the algorithm, which we denote as the local minimum.

For the above clustering scheme, we consider the space of persistence diagrams under the

Wasserstein distance. Yet, in order to account for cardinality differences in the persistence

diagrams, ad hoc matching to the diagonal is allowed in order to ensure bijections γ

between D1 and D2 exist (in other words, any number of features with 0 persistence

can be added as needed). It is assumed that there are infinitely many points along the

diagonal of each persistence diagram with infinite multiplicity Edelsbrunner and Harer [32].

Note that the Wasserstein distance does not explicitly penalize for cardinality differences

between persistence diagrams. Differences in cardinality may play an important role in the

classification problem. Additionally, allowing mapping to the diagonal can lead to situations

where two very different persistence diagrams are considered “close” under the Wasserstein

distance. Moreover, through this assumption, the Wasserstein distance necessarily puts a

smaller weight on low persistence points. We note some researchers contend that the small

persistence points are considered “topological noise” Edelsbrunner et al. [33], Balakrishnan

et al. [8], Edelsbrunner and Harer [31], Atienza et al. [6], Pokorny et al. [68]. However, in
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line with recent studies, we argue that small persistence points are useful for data analysis

Xia and Wei [86], Robins and Turner [71], Bubenik [18]. In the next section, we consider the

classification problem, and define a new metric to address these issues.

3.2 Classification on the space of Persistence Diagrams

Whereas in the last section we assumed a dataset of persistence diagrams without any

associated labels, in this section we will consider the case of supervised learning. That is, we

start with the notion of a dataset of persistence diagrams with a priori knowledge of their

associated class labels. Similarly to the clustering framework, several approaches have been

taken in order to solve the classification problem using persistence diagrams.

One technique researchers have used to is extract a feature vector α ∈ Rd from the

persistence diagrams, and use this in conjunction with classical machine learning algorithms

(such as neural networks, support vector machines, etc.) Adcock et al. [1], Zhang et al. [89].

Unfortunately, this technique takes a persistence diagram, which is already a topological

summary, and further summarizes it into features such as average length of persistence,

number of features, etc. This technique necessarily loses information about the underlying

topology.

Instead, classification should be done directly on the space of persistence diagrams.

Several researchers have tackled the classification problem in this way using the Wasserstein

or Bottleneck distance. In Venkataraman et al. [84], the authors implement a nearest

neighbor classification algorithm using the Wasserstein distance with p = 1 to classify signals

arising from motion sensors on the human body. Similarly, Emrani et. al. Emrani et al.

[35] classify acoustic breathing patterns using a distance based technique, allowing for the

distinction of wheezing and non-wheezing in patients. The authors of Seversky et al. [76] use

both the Wasserstein distance and the p = ∞ Bottleneck distance to classify signals from

a wide variety of applications. In addition, the authors propose treating the persistence

diagrams as images and training an SVM classifier using these images. Similarly, the

researchers in Anirudh et al. [5] treat persistence diagrams as points on a hypersphere using
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a probability density function formulation. This representation is then used for classification

of signals on a stroke rehabilitation dataset.

Typically, two main distances have been used in the study of persistence diagrams: the

Wasserstein distance Kerber et al. [49], Mileyko et al. [59] and the Bottleneck distance

Kerber et al. [49]. In terms of theory, the Wasserstein distance is well studied, as shown

in the previous section; however, the Wasserstein distance has several drawbacks that make

its use questionable in certain applications. Both of these distances require the construction

of a bijection between the two persistence diagrams, but this isn’t always possible due to

cardinality differences. To get around this, these distances assume infinitely many points

with infinite cardinality along the diagonal on each persistence diagram, as discussed in the

previous section. This can lead to situations where two very different persistence diagrams

are considered close. For example, in Figure 3.3, we compare two persistence diagrams. One

has a feature born at time b = .1, while the other has a feature born at b = .8. While their

persistence is the same, the scale of the features is extremely different, and in turn these

persistence diagrams may be representing two very different point clouds arising from two

distinct dynamics. The Wasserstein distance would consider these two topological features

to be very similar. Consider the example in Figure 3.4. Notice that the persistence diagrams

look very similar in terms of large persistence features. However, taking into consideration

the differences in small persistence points, these persistence diagrams are very different.

Second, the Wasserstein distance does not explicitly penalize for cardinality differences

between persistence diagrams. While this may not inherently seen like a problem, it can

be an insurmountable problem in the classification problem. Consider the example in Fig.

4.7, where two very different dynamics may produce persistence diagrams with very different

cardinality. This is extremely important when we look at the generating dynamics. The left

diagram is generated by a random walk type dynamic, while the right diagram is generated by

a multi-stable dynamic. In the context of classification, it is very important to differentiate

between these types of dynamics.

In this section, we propose a distance that addresses this issue by directly mapping all

points in a persistence diagram. In particular, the proposed distance takes into consideration

the geometry of the underlying point cloud by matching small persistence points to each
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other. This distance can be thought of as a point matching (similar to the Wasserstein, but

we forbid matches to the diagonal), plus a regularization term considering the cardinalities

between persistence diagrams. For lower weight on the cardinality difference, the proposed

distance will focus more on small persistence points, related to small geometry changes in

the underlying data (see Fig. 4.9). On the other hand, for a larger regularization term,

the distance will focus on cardinality differences between the persistence diagrams, related

to larger changes in the underlying geometry and topology, potentially caused by dynamics

and/or noise differences (see Fig. 4.7) Adler et al. [3].

Figure 3.3: Consider two persistence diagrams, one with a point at (.1,.2), indicated by
the blue square, and one with a point at (.8,.9), indicated by the red circle. Because these
points are so far away, the Wasserstein Distance (indicated by the solid black line) finds the
optimal bijection as the one mapping both to the diagonal. This results in a distance of .1
between the two diagrams. However, mapping these points to each other (indicated by the
dashed line) may be more useful for classification purposes. This mapping of points to each
other results in a distance of .7, and this better represents the differences in the persistence
diagrams.

We start by defining the new metric dcp, to the space of persistence diagrams (Def. 22).

Relying on this distance we propose a classification scheme and we show that under mild

conditions, the metric space of persistence diagrams is a Polish space and it admits statistical

structure, i.e. Fréchet means and variance.

Definition 22. Consider two persistence diagrams D1 and D2, with cardinalities n and m

respectively such that m ≤ n. Denote the points in D1 by (x1, ..., xn) and points in D2 by
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Figure 3.4: Left: Noisy small scale ε features are paired with a single persistent cycle.
Right: As left, but now we see several low persistence points at larger ε scale, these features
alone, which represent the shape of the signal, tell the difference between the two dynamics.

(y1, ..., ym). Let c > 0 and 1 < p <∞ be fixed parameters. We define the dcp distance as

dcp(D1,D2) = (
1

m
( min
π∈Πm

n∑
i=1

min(c, ||xi − yπ(i)||∞)p + cp|n−m|))
1
p (3.8)

where Πm is the set of permutations of (1, ...,m). If |D1| > |D2|, define dcp(D1,D2) :=

dcp(D2,D1).

Proposition 1. The dcp in Eq. (3.8) is a metric on the space of persistence diagrams.

Proof. We adapt the proof from Schuhmacher et al. [75] to the space PW . According to

Definition 22, it is clear we have that dcp ≥ 0 and that dcp is symmetric and satisfies the

identity. It remains to show the triangle inequality. We consider three persistence diagrams

D1 = (t1, ..., t`),D2 = (u1, ..., un),D3 = (v1, ..., vm). Assume that ` ≤ n and that at most one

of the cardinalities is zero. Since W is a closed and bounded subset of R2, we consider some

dummy points (ai)i∈N and (bi)i∈N at least distance c from W and each other. The two cases

we must consider are ` ≤ n ≤ m and `,m ≤ n.
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We first treat the case when ` ≤ n ≤ m. Extend the persistence diagram D1 with points

t`+j = aj for 1 ≤ j ≤ m− ` and similarly for D2 with un+j = bj for 1 ≤ j ≤ m−n. This way

the cardinality difference is equal to zero in Eq. (3.8). Moreover, after the dummy points

have been added in, let η and ν be the minimum permutations from D1 to D3 and from D3

to D2 respectively. Then, according to Eq. (3.8) and a ≤ cpm implying a
m
≤ a+cp(n−m)

n
, we

have

dcp(D1,D2) = (
1

n
min
π∈Πn

n∑
i=1

min(c, ||ti − uπ(i)||∞)p)
1
p

≤ (
1

m
min
π∈Πm

m∑
i=1

min(c, ||ti − uπ(i)||∞)p)
1
p (3.9)

The right hand side of Eq. (3.9) can further be bounded by

(
1

m

m∑
i=1

min(c, ||ti − vη(i)||∞)p + min(c, ||vi − uν(i)||∞)p)
1
p (3.10)

≤ (
1

m

m∑
i=1

min(c, ||ti − vη(i)||∞)p)
1
p + (

1

m

m∑
i=1

min(c, ||vi − uν(i)||∞)p)
1
p

= dcp(D1,D3) + dcp(D3,D2)

Note that in Eq. 3.10, we are mapping from D1 to D3 in the most optimal way (via

permutation η) and then from D3 to D2 in the most optimal way (via permutation ν).

The second case is when `,m ≤ n. Take η and ν to be the minimum permutations from

D1 to D3 and from D3 to D2 respectively as above. Then, similarly, we have that

dcp(D1,D2) = (
1

n
min
π∈Πn

n∑
i=1

min(c, ||ti − uπ(i)||∞)p)
1
p

≤ (
1

m

m∑
i=1

min(c, ||ti − vη(i)||∞)p + min(c, ||vi − uν(i)||∞)p)
1
p

≤ (
1

m

m∑
i=1

min(c, ||ti − vη(i)||∞)p)
1
p + (

1

m

m∑
i=1

min(c, ||vi − uν(i)||∞)p)
1
p

= dcp(D1,D3) + dcp(D3,D2)
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Intuitively, all points in D1 are matched to points in D2 as best as possible, and then

a regularization term that depends on the remaining difference in cardinality and term c is

penalized. Note that for this distance, it is not needed to assume infinitely many points on

the diagonal, as in the Wasserstein distance, and thus situations as in Fig. 3.3 are avoided.

This distance provides a meaningful distance between two persistence diagrams that also

takes into consideration the cardinality difference between them. The parameter c in Eq.

(3.8) serves as a penalty on the cardinality difference between persistence diagrams. In

particular, a smaller c contributes more weight on the matching between small persistence

points, which is important for small geometric differences between signals (see Fig. 4.9). On

the other hand, a larger c will largely weight on cardinality differences, which is vital for

differentiating between large geometry difference in the point clouds (see Fig. 4.7). These

large changes in cardinality can be caused by large differences in dynamic behavior leading

to large geometry and topology difference in the point clouds (see Fig. 4.7). In particular,

higher scale noise leads to a larger cardinality in persistence diagrams, due to a number of

small scale holes appearing Adler et al. [3].

The dcp distance differs from the Wasserstein distance in the following way. The

Wasserstein distance provided in Definition 3.2 finds the best possible mapping between two

persistence diagrams (where matches to the diagonal are allowed), and then the difference

in cardinality is penalized according to the distance to the diagonal. In the dcp metric, points

are matched as best as possible from the smaller persistence diagram (in cardinality) to

the larger persistence diagram, and then the remaining points are penalized each by c. An

example of this can be seen in Fig. 3.5. Note that if two persistence diagrams have the same

cardinality and if the optimal bijection from the Wasserstein distance in Eq. (3.2) does not

map any points to the diagonal, the Wasserstein distance is equal to the dcp distance (up to

a constant), assuming c is large enough.

We first examine the space of persistence diagrams under this new metric and examine

the properties it exhibits. Define the space of persistence diagrams in W ⊂ R2 as PW,k =

{{x1, ..., xl}|l ≤ k, xi ∈ W, 1 ≤ i ≤ l}, where W is a closed and bounded subset of R2 and

k ∈ N
⋃
{0} and define PW =

⋃
K PW,k. In real data applications, the point cloud lies in a
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(a) Wasserstein Distance (b) dcp Distance

Figure 3.5: Consider two persistence diagrams, one with points represented by red circles,
the other with points represented by blue squares. We compare the Wasserstein distance (on
the left) to the proposed dcp metric (on the right). Note that the distance between points is
computed via the sup norm. Notice how the Wasserstein metric imposes a penalty of .1 to
the extra point (the minimal distance to the diagonal), while the dcp imposes a penalty of c,
which will usually be larger.

bounded subset of Rd and as such the associated persistence diagram is bounded in space.

Moreover, the number of points in the point clouds considered is bounded depending upon

the application (due to sampling rate and observation time). Due to this, it is appropriate

to consider the space PW,k for some W and k in real data situations. We show in the next

lemma that (PW , d
c
p) is a complete and separable space.

Lemma 3.1.1. PW under the dcp distance is a complete, separable metric space.

Proof. We first show completeness. Let {Dn}ki=1 be a Cauchy sequence of persistence

diagrams. It is clear that for some k0, we have that j, l ≥ k0 implies |Dj| = |Dl| = k,

so we may assume without loss of generality that the associated cardinalities are equal. Fix

an ε > 0. Note there is N such that for n,m > N , dcp(Dn,Dm) < ε. In particular, since their

cardinalities are the same, we have that

dcp(Dn,Dm) = (
1

k
min
π∈Πk

k∑
i=1

||xni − xmπ(i)||p∞)
1
p < ε
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and so we have that, for a given point xni ∈ Dn,

||xni − xmπ(i)||∞ < (k)
1
p ε

where π(i) is the minimal permutation.

Thus, there is a sequence of points xni , x
n+1
πn+1(i), x

n+2
πn+2(i), ... such that the distance between

any two points in this sequence is less than 2(k)
1
p ε via the triangle inequality, where πn+α

is the minimal permutation between persistence diagrams Dn and Dn+α. This is a Cauchy

sequence in W under the inf −norm. Since W is complete, this sequence converges to some

limit xi ∈ S. Repeating this for each element in Dn, we generate a persistence diagram D∗

consisting of points (x1, ..., xk) chosen as the limits above.

Therefore, for any fixed εp, since each sequence above converges to the corresponding limits,

there is some N such that for j > N we have ||xji − xi||∞ < ε This implies that

dcp(Dj,D
∗) = (

1

k
min
π∈Πk

k∑
i=1

||xni − xπ(i)||p∞)
1
p ≤ (

1

k

k∑
i=1

||xni − xi||p∞)
1
p < (

1

k
kεp)

1
p = ε

Since this sequence converges to a limit in this space, this space is complete.

Finally, it remains to show separability. Consider the space PQ
⋂
W of all persistence diagrams

with points in Q
⋂
W with finitely many points. Then for any persistence diagram D, find

Dq ∈ PQ
⋂
W such that |D| = |Dq| = k and for all xi ∈ D, there is a corresponding yxi ∈ Dq

such that ||xi − yxi ||p∞ ≤ ε. Then

dcp(D,Dq) =
1

k
(min
π∈Πk

k∑
i=1

||xi − yπ(i)||p∞) ≤ 1

k

k∑
i=1

||xi − yxi ||p∞) ≤ 1

k

k∑
i=1

ε = ε

We now study probability objects on the space of persistence diagrams under the dcp

metric through Fréchet means and variances. We recall these definitions from the previous

section in light of our new distance. Fix a closed and bounded subset W of R2 and a positive

integer k. Consider a probability measure D on the space of (PW,k,B(PW,k)) where B(PW,k)
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is the Borel σ−algebra on PW,k such that

FPW,k(D1) =

∫
PW,k

dcp(D1,D2)2dD(D2) <∞, (3.11)

for all D1 ∈ PW,k.

Definition 23. Given a probability space (PW,k,B(PW,k),D), the Fréchet variance of D is

V arD = inf
D∈PW,k

[FPW,k(D) =

∫
PW,k

dcp(D,D2)2dD(D2)], (3.12)

and the Fréchet expectation or Fréchet mean of D is

E(D) = {D|FPW,k(D) = V arD}. (3.13)

In other words, the Fréchet mean is any persistence diagram minimizing the Fréchet

variance. Next, we show that the Fréchet mean exists for a probability distribution over

PW,k.

Lemma 3.1.2. FPW,K (D) is a continuous function.

Proof. Fix some ε > 0. Consider persistence diagrams D and E such that dcp(D,E) <

min(
√
ε

2
,maxD1,D2(d

c
p(D1,D2)). Then we have that

|FPW,K (D)− FPW,K (E)| = |
∫
PW,k

dcp(D,D1)2dD(D1)−
∫
PW,k

dcp(E,D1)2dD(D1)|

= |
∫
PW,k

dcp(D,D1)2 − dcp(E,D1)2dD(D1)| ≤
∫
PW,k

|dcp(D,D1)2 − dcp(E,D1)2|dD(D1)

≤
∫
PW,k

|(dcp(D,E) + dcp(E,D1))2 − dcp(E,D1)2|dD(D1)

≤
∫
PW,k

|dcp(D,E)2 + dcp(E,D1)2 + 2dcp(D, E)dcp(E,D1)− dcp(E,D1)2|dD(D1)

=

∫
PW,k

|dcp(D,E)2 + 2dcp(D,E)dcp(E,D1)|dD(D1) ≤ ε
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Theorem 3.2. Let D be a probability measure on (PW,k,B(PW,k)) satisfying Eq. (3.11).

Then E(D) 6= ∅.

Proof. Let {Di}∞i=1 be a sequence of persistence diagrams such that FPW,k(Di)→ V arD. We

claim that the space PW,k is totally bounded under the dcp metric. Fix ε > 0. For each

1 ≤ i ≤ k, consider the set of persistence diagrams Di such that Di contains all persistence

diagrams with points on a ε grid of W . Let D =
⋃k
i=1 Di. Then, for any persistence diagram

D ∈ PW,k, there is D∗ ∈ D such that |D| = |D∗| and

dcp(D,D
∗) = (

1

m
( min
π∈Πm

m∑
i=1

min(c, ||xi − yπ(i)||∞)p))
1
p ≤ (

1

m
(
m∑
i=1

εp))
1
p = ε

Thus, this space is totally bounded and by Lemma 3.1.1, this space is complete. Thus it is

compact, and since FPW,K is continuous by Lemma 3.1.2, V arD is attained.

Note that the Fréchet mean may not be unique, as in Fig. 3.1. The Fréchet mean can be

thought of as a centroid on the data metric space of persistence diagrams. The framework

of Theorem 3.2 basically guarantees the mean of a set of persistence diagrams exists in the

space PW,k. For a finite set of persistence diagrams Dn = {Di}ni=1, consider the empirical

distribution Dn = 1
n

∑n
i=1 δDi , that is, the uniform discrete distribution on the finite set of

persistence diagrams. Given this distribution, the Fréchet mean of persistence diagrams Dn

is given by E(Dn).

Using this dcp distance, we consider a classification algorithm for signals via the data

space of persistence diagrams. Suppose for each class C1, ..., CL there are corresponding

training sets T βlC1
, ..., T βlCL containing persistence diagrams corresponding to Betti number βl,

for l = 0, ..., BM , where BM is the largest Betti number considered. Then, for a new signal

x(t) with corresponding βl persistence diagram Dβl
x , define the average distance to a class

Ck, 1 ≤ k ≤ L, associated with the Betti number βl by

dβl(x,Ck) =
1

|T βlCk |

∑
D∈TβlCk

dcp(D
βl
x ,D) (3.14)

33



where |T βlCk | is the cardinality of the training set of persistence diagrams corresponding to

class k and Betti number l. We assign the signal x a label Ĉ defined as

Ĉ = argmin
1≤k≤L

BM∑
l=0

rldβl(x,Ck) (3.15)

where
∑BM

l=0 rl = 1. The rl’s are weights which determine how much each Betti number βl

is considered. Taking all ri’s to be equal gives equal weight to each Betti number. In some

situations, prior knowledge may lead to setting some Betti numbers to higher values.

Algorithm 2 Signal classification using persistence diagrams under the dcp metric.

1: Input 1: New signal x, parameters r1, .., rBM , c, p

2: Input 2: Signals SCk = {xki }
|SCk |
i=1 for each class Ck, 1 ≤ k ≤ L

3: Training Phase
4: for k = 1 to L do
5: for i = 1 to |SCk | do
6: Compute point cloud Pki for xki using delay embedding.
7: for l=1 to BM do
8: Store Persistence Diagram D

βl
xki

Prediction Phase
9: Compute point cloud Px for new signal x
10: for l=1 to BM do
11: Store Persistence Diagram Dβl

x

12: ΣC1 , ...,ΣCL ← 0
13: for k = 1 to L do
14: for i = 1 to |SCk | do
15: for l = 1 to BM do
16: ΣCk ← ΣCk + rl(d

c
p(D

βl
x ,D

βl
xki

))

ΣCk ←
ΣCk
|SCk |

17: Ĉ ← argmin(ΣC1 , ...,ΣCL)

It is important to consider the several different tuning parameters in the model. The

parameter p indicates how sensitive the model is to “outliers” on persistence diagrams, or

points that are hard to match to others. As p tends to ∞, only the most extreme point

match is taken into consideration into the model. The parameter c determines how much

the cardinality difference between persistence diagrams will be penalized. This can be tuned

for specific applications, as the cardinality difference is important for classification when
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dealing with large geometry difference between classes in the dataset (potentially caused by

noise Adler et al. [3]). Finally, the parameters rl determine how much each homological

dimension should be weighted in the class distance computation. For example, it is well

known that when using the delay embedding technique to analyze the persistent homology

of signals, periodicity can be captured in the β1 dimension Perea et al. [66] and chaos can

be captured in the higher dimensions Venkataraman et al. [84]. Moreover, later we will

show that bi-stability can be captured in the β0 dimension for certain types of dynamics.

These parameters give the opportunity for researchers to bring prior knowledge into the

classification problem.

Note that the algorithm requires comparing the distance between a new persistence

diagram and every persistence diagram in the training set. In some applications where

the classes are sufficiently well separated in the data space of persistence diagrams, it may

be sufficient to compare a new persistence diagram with the “mean” of a set of persistence

diagrams. With the guarantee that the mean of persistence diagrams exists, a new classifier

can be implemented where only the mean persistence diagram of each classes training set

needs to be stored and compared to, reducing the runtime of Alg. 2. The algorithm is as

follows (also see Alg. 3): For each class C1, ..., CL with corresponding persistence diagram

training sets T βlC1
, ..., T βlCL , compute the Fréchet mean Dβl

Ck
of the distribution

DlCk =
1

|T βlCk |

∑
D∈TβlCk

δD

where δ is the Dirac function. Once these means are computed, a new signal x will be

classified according to

Ĉ = argmin
1≤k≤L

BM∑
l=0

rld
c
p(D

βl
x ,DlCk) (3.16)

where
∑BM

l=0 rl = 1 and BM is the maximum Betti number considered. Now, the

computational cost is passed onto the computation of the Fréchet mean, which only must

be computed once. In particular, the runtime of the original algorithm is proportional to

the number of signals in the training set, whereas in the proposed algorithm, the runtime is

only proportional to the number of classes. This algorithm is similar to Alg. 2 above, except
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for the storing of the Fréchet means. In the case where the classes are sufficiently separated

in a topological sense, we anticipate that this algorithm will provide similar results to the

original algorithm at a fraction of the computational cost. However, when classes are not

well separated, we the original Alg. 2 may be better suited.

Algorithm 3 Signal classification using persistence diagrams under the dcp metric using
Fréchet means.

1: Input 1: New signal x, parameters r1, .., rBM , c, p

2: Input 2: Signals SCk = {xki }
|SCk |
i=1 for each class Ck, 1 ≤ k ≤ L

3: Training Phase
4: for k = 1 to L do
5: for i = 1 to |SCk | do
6: Compute point cloud Pki for xki using delay embedding.
7: for l=1 to BM do
8: Store Persistence Diagram D

βl
xki

9: for k=1 to L do
10: for l=1 to BM do
11: Compute the Fréchet mean Dβl

k of class Ck in dimension l

12: Prediction Phase
13: Compute point cloud Px for new signal x
14: for l=1 to BM do
15: Store Persistence Diagram Dβl

x

16: ΣC1 , ...,ΣCL ← 0
17: for k = 1 to L do
18: for l = 1 to BM do
19: ΣCk ← ΣCk + rl(d

c
p(D

βl
x ,D

βl
k ))

ΣCk ←
ΣCk
|SCk |

20: Ĉ ← argmin(ΣC1 , ...,ΣCL)

3.3 Discussion and Future Directions

We propose the first clustering algorithm directly on the space of persistence diagrams. By

clustering directly on the space of persistence diagrams, no information from the original

persistence diagrams is lost, in contrast with feature-based techniques. Moreover, we prove

convergence of our proposed algorithm. In order to improve our clustering algorithm, in the

future we will consider different types of distances on the space of persistence diagrams. This
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is in line with similar work which suggests that the Wasserstein distance excels at detecting

large differences in topology (i.e. differences in periodicity and multi-stability), but struggles

in detecting small differences in the geometry of the phase space Marchese and Maroulas

[55]. In future work, we will develop an Algorithm for computing the Fréchet mean with the

proposed dcp distance, which is able to detect these differences, and leverage this to create a

new clustering scheme based on these distances.

Further, a new classification scheme for signals has been introduced on the data space of

persistence diagrams. A major advantage of this algorithm is the tuning that can be applied

to these parameters to fit the data. As c increases, the penalty for cardinality difference is

more severe, and as p increases, the penalty for matching points that are far away from each

other is higher. In particular, when we expect a large difference in the underlying geometry

and topology of the datasets, a larger parameter c is important for good classification. On

the other hand, when we care more about the geometry differences in the signals, a smaller

c allows more of a focus to be placed on the mapping of the small persistence features to

each other and less focus to be placed on the cardinality difference.

We note that the dcp distance may not be the most adequate choice for all datasets. In

particular, in the case of a classification problem in which one class is expected to have

a large, prominent topological feature while the other class is not expected to have this

feature, the Wasserstein or Bottleneck distance may be good choices (see Emrani et al. [35]).

However, this prior information about prominent features is often not available.
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Chapter 4

Data Analysis Results

4.1 Computational Preliminaries

4.1.1 Hungarian Algorithm

Both the Wasserstein distance and the proposed dcp distance can be computed using the

Hungarian algorithm. The Hungarian algorithm is a combinatorial algorithm solving the

optimal assignment problem for points in polynomial time Kuhn [51], Golin [41]. In

particular, consider two persistence diagrams. The goal is to find the optimal bijection

between the points in one persistence diagram to the points in the other persistence diagram,

such as the one demonstrated in Fig. 4.1. In order to do this, consider the points in

persistence diagrams to be X = {xi}Ni=1 and Y = {yi}Mi=1. Moreover, define the cost of

mapping xi to yj to be the distance d(xi, yj) for the chosen metric d.

For the proposed dcp distance, we use this algorithm to find the optimal matching of points

between the two persistence diagrams, and then penalize the extra points as described in

Definition 22. Computing the dcp distance using the Hungarian algorithm can be thought

of as adding in “dummy” points to the smaller persistence diagram from R2\W , that are

at least distance c from all points in the larger persistence diagram. Then, an optimal

point assignment can be found under the Hungarian algorithm between the two “equal” size

persistence diagrams.
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Figure 4.1: An optimal bijection between two persistence diagrams, one with points in
blue, one with points in red.

For the Wasserstein distance, it is a bit more challenging as considerations have to be

made to allow for matches to the diagonal. In this case, let X0 be the off-diagonal points in

the first diagram, let X ′0 be the orthogonal mapping to the diagonal, and similarly for Y0 and

Y ′0 . The goal is to find the optimal mapping between X0

⋃
Y ′0 and Y0

⋃
X ′0. Intuitively, this

is because points in the first diagram can be mapped to either points in Y or the diagonal

of X, but they would only ever be mapped to their closed point on the diagonal, which is

given by X ′0.

4.1.2 k−fold cross-validation

When training a supervised learning model, it is often a bad idea to directly measure the

error using the data that was used to create the model. This is due to the bias introduced

into the model by the training examples, leading to an underestimation of the true error

of the model. In order to alleviate this problem, we will implement k-fold cross validation

Hastie et al. [43] for validating our supervised learning scheme. The process works as follows.

First, the dataset of persistence diagrams is partitioned into k parts. Then, the Alg. 2 is

trained k distinct times - each time, one of the partitions is left out of the model. Then, the

error is measured on the held out data, and the error is averaged over all k models. This
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averaged error is then used as a measure of the true error of the model. This procedure is

depicted in Fig. 4.2. The full pipeline for the signals considered id depicted in Fig. 4.3.

Figure 4.2: 4-fold cross-validation for estimating true error Flock [38].

4.2 Competing Methods

A common feature extraction technique is through the use of wavelets Chan and Fu [22],

Agrawal et al. [4], Kawagoe and Ueda [48]. Through the use of a Discrete Wavelet Transform

(DWT), time and frequency properties of the signals can be maintained and extracted. The

technique works through the use of wavelets, which serve as basis functions. In particular,

it is common to use Haar wavelets. The Haar basis is constructed by starting with the

piecewise continuous function

φ(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2
< x ≤ 1

0 otherwise

Then, define φjk(x) = φ(2jx − k) where j ≥ 0 and 0 ≤ k < 2j Strang [80], Chui [25]. In

this case, the features extracted would be related to the coefficients of the basis functions.

Similarly, features can be extracted via Fourier techniques. In particular, we will consider

features related to the power Cepstrum, given by |F−1(log(|F(f(t))|2))|2 where F is the

Fourier Transform and f(t) is the time-series. The power Cepstrum has long been used to

analyze acoustic signals and has been used in similar acoustic signal classification applications

[79] [64].
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Figure 4.3: The methodology through which the signals are processed is visualized above.

It is intuitive to also consider foregoing the extraction of features, and instead defining a

dissimilarity measure directly between signals and use a hierarchal clustering technique based

on this metric. One such technique is through Dynamic Time Warping (DTW) Sakoe and

Chiba [73, 74]. DTW attempts to match these signals by constructing a matrix corresponding

to the squared distance between samples of the signals. Using this matrix, the algorithm

attempts to minimize the warping cost

DTW (fi(x), fj(x)) = min(

√√√√ L∑
`=1

w`)

where w` is the matrix element (i, j)k that also belongs to the kth element of a warping path

- an ordered set of matrix elements representing a mapping from fi to fj Ratanamahatana

and Keogh [69]. In other words, each wl = (d(fi(xk), fj(x`))) is the cost associated with

mapping point fi(xk) from the first time-series to point fj(x`) in the second time-series.

In both the DTW and feature extraction approach, clustering can then be implemented

through a scheme known as as hierarchical clustering. In particular, we will focus on
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Figure 4.4: An example of a DTW mapping between two signals Zhen et al. [90].

agglomerative hierarchical clustering, or “bottom-up” clustering Hastie et al. [43], Ward Jr

[85].

The method works as follows. Assume that we start with a dataset of points (x1, ..., xn)

and a distance matrix D between them. When xi ∈ Rd for some dimension d, this distance is

usually the Euclidean metric. However, for points xi ∈ X for some generic space X, we just

need some distance d(·, ·) between them. We start by treating each data-point as its own

cluster. Then, using some predetermined linkage criteria, we combine two of the clusters.

Common linkage criteria between clusters X1, X2 are:

Type Formula

Complete max{d(xi, xj)|x ∈ X1, x ∈ X2}

Single min{d(xi, xj)|x ∈ X1, x ∈ X2}

Ward |X1||X2|
|X1|+|X2| ||X̄1 − X̄2||2

This procedure continues until all data-points are merged into one cluster or a stopping

criteria is reached. The result is a dendrogram, showing when each cluster was merged. If

we know the number of clusters K a priori, we can cut off the dendrogram at K clusters.

4.3 Clustering Results

We now benchmark our proposed Algorithm 1 on several datasets. In order to assess the

efficacy of our clustering algorithm and comparison algorithms, we find the best labeling

of classes with respect to misclassification rate of the ground truth labels, and we denote

this misclassification rate as “error”. We benchmark Algorithm 1 against a Dynamic Time
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Warping (DTW) hierarchical clustering algorithm, and a wavelet feature-based hierarchical

clustering algorithm. For both of these cases, the Ward criteria is used. We stress that our

algorithm is not a classification algorithm, but we show error with respect to the ground

truth only in order to benchmark against current algorithms.

For the computation of Fréchet means, we implement an algorithm introduced by [82]

that estimates a local minimum of the Fréchet function. To implement this algorithm, we

initialize by randomly selecting a persistence diagram from our dataset. Then, we find the

optimal matching from this persistence diagram to every other persistence diagram, and

average the mapped points. This algorithm continues until convergence is reached in the

sense of the center diagram not changing. The Vietoris-Rips complexes are computed using

Ripser Bauer [10].

4.3.1 Synthetic Dataset

We benchmark Algorithm 1 on a synthetic dataset with 4 different types of signals.

wi = ω sin(oi) + ηi, (4.1)

vi+1 = vi + ηi, (4.2)

ui+1 = α sin(ui) + ηi, (4.3)

zi = ω(1 + .5 cos(oi))(cos(oi)) + ηi, (4.4)

where ηi ∼ N(0, .1), ω ∼ Unif(1, 3), α = 2.5 and oi ∈ O is a grid of values (we choose

O = [0, 50] with increments of .01). A depiction of these different is shown in Fig. 4.5.

Notice that the different classes of signals vary widely in terms of periodicity, multi-stability,

and noise. We generate a dataset of 10000 signals of each class, giving a population of 40000

signals. We then sample 100 signals from each class and test the algorithm on subsets of 400

signals each.
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(Class 0) (Class 1) (Class 2) (Class 3)

Figure 4.5: The four classes of signals used for benchmarking the clustering algorithm.

Table 4.1: Results for clustering of signals from Eqs. (4.7)-(4.8).

Method Error
DTW .6188

Wavelet .6406
Fréchet Mean Clustering .3183

Note that the proposed method outperforms the DTW and wavelet clustering methods,

as seen in Table 4.1.

4.3.2 Real Dataset

We now benchmark Algorithm 1 on the OSU Leaf dataset (available at http://www.cs.ucr.

edu/~eamonn/time_series_data/). This dataset contains 6 classes and 442 time-series,

where each class is representative of a different species of leaf Gandhi [39]. The goal is to

stress our proposed algorithm and competing algorithms on a dataset with more clusters

with more similar types of signals (as seen in Fig. 4.6). It is important to note that this is a

very challenging signal classification dataset due to the similarity of the signals. As shown

in Table 4.2, our proposed algorithm outperforms the competing DTW and wavelet based

clustering algorithms, though all algorithms have relatively low accuracy due to the difficulty

of classification on this dataset.

Table 4.2: Results for clustering of signals from OSU Leaf dataset.

Method Error
DTW .6448

Wavelet .6991
Fréchet Mean Clustering .5769
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(Class 0)

(Class 3)

(Class 1)

(Class 4)

(Class 2)

(Class 5)

Figure 4.6: Examples of signals from the six classes used for benchmarking the clustering
algorithm in the OSU dataset.

4.4 Classification Results

The Vietoris-Rips complexes are computed using Ripser Bauer [10]. We consider Betti

numbers β0 and β1 in Eq.(3.15), with r0 = r1 = .5, assigning equal weight to β0 and β1

features.

4.4.1 Synthetic Dataset 1

We now aim to benchmark the classifier introduced in Eq. (3.15) on a synthetic dataset,

where signals are produced from two different stochastic dynamics:

vi+1 = vi + ηi, (4.5)

ui+1 = α sin(ui) + ζi, (4.6)
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where ηi ∼ N(0, σ), α = 2.5, ζi ∼ N(0, σ), and the hyper-parameter σ ∼ Unif(0, .5). Note

that for a given signal v = {vi}Ni=1 the noise η = {ηi}Ni=1 is generated independently of each

other, and independent of the signal. We set v(0) = u(0) = 0, and fifty signals of each

dynamic are generated for the synthetic dataset.

These dynamics produce two very different types of signals. Signals generated from

Eq.(4.5) are random walks with Gaussian noise, as in Fig. 4.7 (a). Notice that random walk

signals exhibit no form of periodicity or consistency.

The second dynamic, Eq.(5.4), generates signals that tend towards a bistable solution

Law et al. [52]. The reason for this is due to the symmetry of the equation under the

transformation u→ −u, leading to two solutions. Under no noise, the system would fall into

one of these solutions depending on the initial parameters. Once noise is introduced into

the system, the solution to the dynamic randomly transitions between the two solutions at

a rate depending on the magnitude of the noise, as can be seen in Fig. 4.7(b). Note that

while in each of the two stable solutions, the signal exhibit a local periodicity. Due to the

different behavior of the two dynamics, it is reasonable to expect a classifier to distinguish

between them. In particular, this difference of the underlying geometry can be seen in Figs.

4.7 (c) and (d). Note that in the point clouds of bistable signals the points are attracted to

four difference centers, corresponding to the two stable states in the original signal.

The classifier in Eq.(3.15) is now implemented in order to differentiate between signals

from the two dynamics above using the proposed dcp distance as described in Section ??. We

test our proposed classifier against one using the Wasserstein distance, and standard Fourier

and wavelet methods.

Results are presented in Fig. 4.8. We note that the proposed dcp distance outperforms the

Wasserstein distance over all values of p and c as well as the Fourier and wavelet classifiers.

The dcp classifier is consistent with respect to changes in p, and increasing c from 1 to 5 gives

a slight increase in accuracy of the dcp classifier. This implies that the classifier is learning

some important features of the cardinality of the persistence diagrams, related to the large

differences in the geometry and topology of the underlying systems. This is reinforced by

the cardinality statistics seen in Fig. 4.7 (g) and (f). In addition, we see that the proposed
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 4.7: Sample signals, point clouds, persistence diagrams, and cardinality statistics
for (Left) Random walk signals as in Eq. (4.5) and (Right) Bistable signals as in Eq. (5.4).
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Figure 4.8: Synthetic data results for p = 1, ..., 5 and c = 0.2, 1, 5 for Eqs. (4.5) and (5.4).

dcp classifier has very good accuracy with respect to larger values of p, while the Wasserstein

distance starts to deteriorate.

4.4.2 Synthetic Dataset 2 - A Parameter Sensitivity Test

The sensitivity of our method with respect to the two tuning parameters of the dcp distance

is examined in this section. We consider the signals as in Fig. 4.9 (a) and (b), which produce

point clouds as in Fig. 4.9 (c) and (d). These signals are given by the formulas below:

vi = ωsin(oi) + ηi, (4.7)

ui = ω(1 + .5cos(oi))(cos(oi)) + ηi, (4.8)

where ηi ∼ N(0, σ), ω ∼ Unif(1, 3) and oi ∈ O is a grid of values (we choose O = [0, 50]

with increments of .01). For testing purposes, we generate twenty five of each signal. For

this particular dataset, the small persistence points in the persistence diagrams is the main

discriminating factor between the two classes of signals since both types of signals have

similar topology as can be seen by the prominent features in Fig. 4.9 (e) and (f). Thus,

the dcp algorithm should perform well on it, due to its explicit mapping of small points to

48



each other, and not to the diagonal, in contrast to the Wasserstein distance. However, the

inherent noise properties of the underlying signals and point clouds will not be useful for

classification, since the noise and total variation is on the same scale for both dynamics. In

particular, it is expected that cardinality is not an important factor for this dataset, and in

fact may hinder classification, since both cases consider similar noise and variation and only

have small differences in geometry.

The results are depicted in Fig. 4.12 for c = 0.4, 1, 3 and 5 and for p = 1, ..., 5.

As expected, we have very good classification results for a small c, when the algorithm

is prominently classifying via mapping the small persistence points to each other. As

c increases, the penalty for differing cardinality grows and our classifier starts to break

down on this dataset. This demonstrates that the cardinality alone is not enough for good

classification, but having a scalable c parameter allows a trade-off between cardinality and

mapping between features.

In general, when the underlying systems generating the data have small differences in

their geometry, we expect results to deteriorate as c increases. This can also be seen in the

cardinality statistics of the persistence diagrams in Fig. 4.9 (g) and (h). On the other hand,

we expect results to improve as c increases for datasets where there is a large geometry

or topology difference in the underlying point cloud; this is potentially caused by either

differences in underlying noise in the system, or large differences in dynamic behavior. For

systems with a very persistent topological feature present in one class that is absent in the

other class, we expect results to improve as p increases. Intuitively, this is because as p

increases, the algorithm focuses more on the most extreme matching. When p is set to

infinity, only the most extreme matching will be considered. We also present results for

the Wasserstein distance, as well as Fourier and wavelet based methods. Note that the dcp

distance outperforms all other methods, followed by the Wasserstein distance.

4.4.3 Real Acoustic Signal Dataset

We now benchmark the classifier on a real acoustic dataset. The dataset has been provided

by the US Army Research Laboratory (ARL). The dataset contains digital recordings of

various explosions. In total, 102 signals are used from 2 classes, focusing on signals from
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 4.9: Sample signals, point clouds, persistence diagrams, and cardinality statistics
for (Left) Periodic signals as in Eq. (4.7) and (Right) Doubly Periodic signals as in Eq.
(4.8).
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Figure 4.10: Results for p =
1, ..., 5 and c = .4, 1, 3, 5.

Figure 4.11: Results for com-
peting methods.

Figure 4.12: Results on dataset generated by Eqs. (4.7) and (4.8).

tube explosions for different caliber sizes. The class to predict is the weapon type. The

dataset contains 66 signals from class 0 and 36 signals from class 1. Each signal contains

measurements from four microphones. The data is recorded at a sampling rate of about 1000

Hz, and consists of 6 to 7 seconds of data per signal. Due to the highly concentrated nature

of the signals, the signals are first truncated around to about one second of data around the

explosion.

The data contains information from four microphones (channels) placed close together.

First, a single channel is selected and used for all signals. Results for differing p and c values

are shown in Fig. 4.16(a). We note that under optimal parameters for each classifier, the

dcp distance outperforms all other classifiers. As p increases, the dcp classifier increases in

accuracy and outperforms the Wasserstein distance. In contrast, the Wasserstein distance

experiences a significant drop-off as p increases to 4 and 5. We note that for p = 3, the

Wasserstein classifier spikes in accuracy and is competitive with the dcp classifier at this

specific p value. Moreover, as c increases, the dcp accuracy starts deteriorating. This indicates

that the small persistence points are important for classification on this dataset. This is also

demonstrated in the cardinality statistics presented in Fig. 4.13 (g) and (h), which shows a

similar cardinality between the classes.
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 4.13: Sample signals, point clouds, persistence diagrams, and cardinality statistics
for (Left) Class 1 and (Right) Class 2 signals.
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Figure 4.14: Single channel
results for p = 1, ..., 5 and c =
.2, .4.

Figure 4.15: Multichannel
results for p = 1, ..., 5 and c =
.2, .4.

Figure 4.16: Results on acoustic dataset.

Table 4.3: Confusion matrix for the dcp classifier on the one channel dataset for p = 5, c = .2.

Predicted Labels
0 1

True Labels 0 59 7
1 4 32
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Table 4.4: Confusion matrix for the dcp classifier on the multichannel dataset for p = 5, c =
.2.

Predicted Labels
0 1

True Labels 0 61 5
1 2 34

Next, we train a classifier for each channel and classify the four-channel signals via a

majority vote scheme. Under the scheme, each channel reports a class prediction, and

then the class with the most “votes” is chosen as the prediction. The prediction is chosen

uniformly at random if there is a tie between the four channels. These results are shown for

various c and p values in Fig. 4.16(b).

As in the single channel case, the proposed dcp distance outperforms the other classifiers

under optimal parameters. We again notice that for p increasing to 4 and 5, the Wasserstein

classifier starts to deteriorate as the dcp accuracy is consistent. Moreover, as in the single

channel case, the dcp classifier accuracy deteriorates as c increases, indicating that large

geometry and topology differences are not prominent between the two classes. The confusion

matrices for the best performing dcp classifier is displayed in Tables 4.3 and 4.4. In both the

single and multi channel cases, around the same proportion of each class was misclassified.

4.5 Discussion and Future Directions

One main observation on the results of the clustering scheme on the synthetic dataset is

that the algorithm performs well when the classes of signals are well separated in terms of

features that persistent homology is sensitive too. In particular, persistent homology excels

at detecting differences in the shape of signals, such as periodicity and bi-stability Perea et al.

[66], Venkataraman et al. [84]. We observe this on our results, as our proposed algorithm

successfully characterizes the periodic signals and the bistable signals as distance classes,

and furthermore separated them from the random walk signals, which should experience

no patterns such as these. We compare this to the competing algorithms, that try to

find structure in the random walk signals instead of grouping them based on their lack

of structure.
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With regard to the proposed classification scheme, we notice that the scheme outperforms

similar techniques using the Wasserstein distance as well as classifiers using signal processing

Fourier techniques and wavelet techniques. Employing this new distance that depends on

the tuning parameters p and c, we offer a comparison of the dcp distance (Definition 22)

to the Wasserstein distance under different parameters and a sensitivity testing. A major

advantage of this algorithm is the tuning which can be applied to these parameters to fit

the data. As c increases, the penalty for cardinality difference is more severe, and as p

increases, the penalty for matching points that are far away from each other is higher. In

particular, when we expect a large difference in the underlying geometry and topology of

the datasets, a larger parameter c is important for good classification. On the other hand,

when we care more about the geometry differences in the signals, a smaller c allows more

of a focus to be placed on the mapping of the small persistence features to each other and

less focus to be placed on the cardinality difference. For example, a common trend in the

real dataset benchmarked in Fig. 4.9 is the improvement of the dcp classifier as c decreases,

suggesting that under the conditions of this dataset, matching of small persistence points is

more important than cardinality differences.

A future direction we will pursue is increasing the efficiency of the runtime of our

algorithm. We compute the Wasserstein and dcp distance via utilizing the Hungarian matching

algorithm Kuhn [51], which runs in O(n3) time. Recent work has shown that this runtime

can be significantly reduced by matching the points in a persistence diagram in a way which

leverages their geometry Kerber et al. [50]. In future work, this type of matching algorithm

will be incorporated into our proposed algorithms, in both distance computation and in

computing the Fréchet means.

Another future direction of research is further quantifying the cardinality of persistence

diagrams as a function of the type and scale of the noise in the system. As a preliminary

result on this topic, consider Table 4.5. In this example, we consider periodic signals as in

Eq. (4.7), but generate 10 signals for each level of changing variance. We then compute the

average cardinality of the persistence diagrams at each level. We notice that, at least for

Gaussian noise, the cardinality increases as the scale of the variance increases. Intuitively,
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this is due to the number of small persistence points (in particular, 1−dimensional holes)

increases in the topology of the point cloud.

Table 4.5: Differing cardinalities of persistence diagrams corresponding to the differing
scales of noise.

Variance of Noise Average Cardinality of Persistence Diagram
0 351.4
.1 470.1
.2 493.5
.3 497
.4 505.5
.5 506.4
.6 512.9
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Chapter 5

Topological Stability in State

Estimation

In the previous chapters, we have considered the time-series data as observations of the

true space that we are interested in. However, it is often the case in data analysis where a

low dimensional signal is observed from a high dimensional system. In this case, there is a

Hidden Markov Model system in place where instead of performing inference on the lower

dimensional space, it would make more sense to reconstruct the original dynamical system

and performance inference in this space Crisan and Doucet [27], Kantas et al. [47]. To this

end, we study the relationship between persistent homology and filtering and smoothing

techniques. These filtering techniques allow us to estimate the path of a dynamical system

in some higher dimension given the observations in a lower dimension Beskos et al. [11].

Moreover, persistent homology can reveal the underlying topology of a filtered dynamical

system, which can be utilized for classification Venkataraman et al. [84], Marchese and

Maroulas [56]. Topological features such as connected components and 1-dimensional holes

are indications of specific long-time behavior in a dynamical system, such as bistability or

periodicity. We are interested in how persistent homology can be used to study dynamical

systems in the context of filtering and smoothing. In particular, we will present a result on

how much the persistent homology of a expected filtered path can differ from the persistent

homology of the optimal path.
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5.1 Topological Stability

Before considering how persistent homology interacts with the filtering of dynamical systems,

we discuss some well-known stability results of the Wasserstein and Bottleneck distances

Cohen-Steiner et al. [26]. We begin by discussing how to construct a persistence diagram by

from a function instead of a point cloud. We follow the presentation in Edelsbrunner and

Harer [32]. Let X be a triangulable space (in our case we will consider subsets of Rd) and

f : X → R be a continuous function. Given a threshold a ∈ R, define the sublevel set of f

at a to be Xa = f−1(−∞, a]. As with persistent homology of point clouds, considering the

sublevel sets for an increasing series of values of a leads to a nested sequence of homology

groups. For example, for a1 < a2 < ... < aj we have corresponding sublevel sets

Xa1 ⊆ Xa2 ⊆ ... ⊆ Xaj

Each of these groups has a corresponding homology group for each topological dimension

k, which are naturally included in each other, leading to a chain

Hk(Xa1)→ Hk(Xa2)→ ...Hk(Xaj)

At certain values of a, the homology group will change. These values of a are called

homological critical values, corresponding to a k−dimensional homological feature being

born or dying.

Definition 24. A continuous function f is said to be tame if it only has a finite number of

homological critical values.

First we give a stability result for the Bottleneck distance dB,

Theorem 5.1 (Chazal et al. [23]). Given a pair of tame Lipschitz functions f, g : Ω → R

on a triangulable space Ω, we have that

W∞(dgm(f), dgm(g)) ≤ ‖f − g‖∞
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In particular, we are interested in a special case of this result. Consider finite sets of

points U and V in Rd. Define f(z) = minu∈U ‖u− z‖∞ and g(z) = minv∈V ‖v − z‖∞. With

f and g as defined above, we note that dgm(f) and dgm(g) are exactly the persistence

diagrams created from the Čech complex over U and V . Our goal is to bound the difference

between dgm(U) and dgm(V ) given that U and V are “close” as quantified by the Hausdorff

distance:

Definition 25. The Hausdorff distance between sets U and V is given by

dH(U, V ) = max(max
u∈U

min
v∈V
|u− v|,max

v∈V
min
u∈U
|u− v|)

In particular, Theorem 5.1 can instead be stated as:

Theorem 5.2 (Chazal et al. [23]). Given totally bounded metric spaces X and Y ,

W∞(dgm(U), dgm(V )) ≤ 2dH(U, V )

The idea of the proof for Theorem 5.2 is as follows:

Assume dH(X, Y ) < ε, where U = {ui}Ni=1 and V = {vi}Mi=1. Then for all v ∈ V , there

exists u ∈ U such that |v − u| < ε, and similarly for u ∈ U , there is v ∈ V such that

|u − v| < ε. Thus, there is some correspondence φ : U → V such that |u − φ(u)| < ε, and

similar some correspondence from V to U . However, it is important to note that there is

not necessarily a bijection such that this is true. In order to address this, consider Û and V̂ .

Û contains M copies of each point in U , and similarly V̂ contains N copies of each point in

V . Note that there is a bijection ψ : Û → V̂ such that |u − ψu| < ε. Also, it is important

to note that the homology groups of U and Û are the same, and so we lose no information

with the extension of U and V . In particular, it is clear that V Rε(U) ↪→ V Rε(Û), and in

fact, the underlying homology groups are isomorphic.

Using this bijection, for a fixed scale r we are able to define a injection ψε : V Rr−ε(Û)→

V Rr(V̂ ) where a simplex σ = (uσ1 , ..., u
σ
` ) is mapped onto ψε(ψ(uσ1 ), ..., ψ(uσ` )). Similarly, the

map ψr
−1 : V Rr(V̂ ) → V Rr+ε(Û) is injective. Thus, in some sense for any fixed scale r we
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have “squeezed” V Rr(V̂ ) between V Rr−ε(Û) and V Rr+ε(Û). Moreover, the maps φε above

induce injections onto the chain groups of the associated Rips complexes, as seen below.

Cr−ε
0 (Û) ←−−− Cr−ε

1 (Û) ←−−− · · · ←−−− Cr−ε
k (Û)

φr−ε

y φr−ε

y φr−ε

y φr−ε

y
Cr

0(V̂ ) ←−−− Cr
1(V̂ ) ←−−− · · · ←−−− Cr

k(V̂ )

φ−1
r

y φ−1
r

y φ−1
r

y φ−1
r−

y
Cr+ε

0 (Û) ←−−− Cr+ε
1 (Û) ←−−− · · · ←−−− Cr+ε

k (Û)

This technique is known as interleaving of persistence diagrams. In particular, using

the maps defined above and proceeding with these homological algebra techniques, it can

be shown that the persistence diagrams dgm(U) and dgm(V ) are close together under the

bottleneck distance.

Using this above result, we obtain a bound for the p-Wasserstein distance.

Theorem 5.3. Given totally bounded metric spaces X and Y ,

Wp(dgm(U), dgm(V )) ≤ 2dH(U, V )(Tf )
1
p ,

where Tf is the total number of possible features (which depends on the number of points in

U and V ).

Proof. The proof follows directly from Theorem 5.2. We have that

Wp(dgm(U), dgm(V ))p = inf
γ

∑
u∈dgm(U)

‖u− γ(u)‖p∞ ≤ 2p
∑

u∈dgm(U)

dH(U, V )p = 2pTfdH(U, V )p.

5.2 Preliminaries of the Particle Filter

Here we give a synopsis of the filtering problem following Law et al. [52], Doucet et al. [30].

For the rest of this section, we will assume the following dynamic/observation system:

vj+1 = φ(vj) + ξj (5.1)
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zj+1 = h(vj+1) + ηj+1 (5.2)

where ξj, ηj are noise distributed according to some distribution i.i.d., h : Rn → Rm is the

observation function and φ : Rn → Rn drives the dynamics. Intuitively, we are interested

in a dynamic vj+1 with hidden states which we estimate through the observation operator

h(vj+1), leading to known states of the observations zj+1. We first define a Markov kernel.

Definition 26. A function p : Rl ×B(Rl)→ R+ is a Markov kernel if

• For each x ∈ Rl, p(x, ·) is a probability measure on (R,Rl)

• x→ p(x,A) is B(Rl) measurable for all A ∈ B(Rl).

In particular, for the filtering problem we assume that at any time j, we have access

to z1:j = {z1, ..., zj}, and our goal is to estimate the filtering distribution of the true state

π(vj|z1:j). Since π(vj|z1:j) =
∫
Rn π(vj+1|vj)π(vj|z1:j)dvj, we must estimate π(vj+1|vj) and

π(vj|z1:j). π(vj+1|vj) can be obtained through the Markov Kernel generated through the

dynamics Φ, so it remains to estimate π(vj|z1:j). By Baye’s formula, we see that π(vj|z1:j) =

π(zj |vj)π(vj |z1:j−1)

π(zj |z1:j−1)
. In the case when the observation and dynamic functions are linear (when

φ(v) = Mv and h(v) = Hv for M ∈ Rn×n and H ∈ Rm×n) and the noise is Gaussian, it

is well known that the Kalman filter provides a closed form for the optimal estimate of the

filtering distribution Kalman et al. [45]. However, this is often not the case. In particular,

we will consider situations in which the dynamics are highly nonlinear with Gaussian noise.

In this case, we will make use of the particle filter, which has been used in many applications

in which the dynamics or observation is non-linear Evangelou and Maroulas [36], Kang et al.

[46]. Intuitively, the particle filter algorithm proceeds as follows. First, in the prediction step,

particles from the previous posterior distribution are propagated through the dynamic. Then,

in the update step, the particles are corrected using the information from the observation.

In particular, we will use a Markov Kernel to handle the propagation of particles through

the dynamic φ. Denote by µj = π(vj|z1:j) the actual distribution of the true state given the

observations and µ̂j = π(vj+1|z1:j). At each step j, µj is approximated by a collection of P

particles {v(i)
j }Ni=1 via a distribution µj

N =
∑N

i=1w
(i)
j δv(i)j

for weights w
(i)
j summing to 1, and

similarly, µ̂j is approximated by µ̂j
N =

∑N
i=1 ŵ

(i)
j+1δv̂(i)j+1

. The particle filter proceeds in two
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steps: predicting the next location of the true state, and correcting this prediction using the

observation.

For the prediction step, the particles {v(i)
j }Ni=1 are propagated through the dynamics

through the relevant kernel; we have that v̂
(i)
j+1 ∼ p(v

(i)
j , ·). For the correction step, the data

is considered through gj(vj+1) ∝ π(zj+1|vj+1). Thus, each of the weights w
(i)
j is updated

according to ŵ
(i)
j+1 = gj(v̂

(i)
j+1)w

(n)
j . However, if this technique is followed it will lead to a

situation where one particle has weight 1 and the rest tend to 0. To alleviate this problem,

a re-sampling step is added, in which the particles are re-sampled according to their weights

ŵ
(i)
j+1, and each of these re-sampled particles are given equal weight. A cartoon demonstrating

the particle filter can be seen in Fig. 5.1.

Figure 5.1: Cartoon demonstrating how the particles are updated through the particle
filter.

5.3 Topological Stability for the Particle Filter

We now present a stability result for persistence diagrams of the particle filter smoothed path

compared to the optimal path. We first must establish the three lemmas in line with Law

et al. [52]. First, we establish the following operators on the space of probability measure on

Rn:
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(Ljµ)(dv) =
gj(v)µ(dv)∫

Rn gv(v)µ(dv)

(P (µ)(dv) =

∫
Rn
p(v′, dv)µ(dv′)

(SNµ)(dv) =
1

N

N∑
i=1

δv(n)(dv), v(i) ∼ µi.i.d.

These represent the likelihood, dynamics, and sampling operators. In particular, it is

important to note that µNj+1 = LjS
NPµNj and that µj+1 = LjPµj. For the below lemmas,

let µ, ν, ν ′ ∈ π(Rn), the space of probability measures on Rn.

Lemma 5.3.1. supµ∈P (Rn)sup|f |∞≤1

√
E|SNµ(f)− µ(f)|2 ≤ 1√

N

Lemma 5.3.2. sup|f |∞≤1

√
E|Pν(f)− Pν ′(f)|2 ≤ sup|f |∞≤1

√
E|ν(f)− ν ′(f)|2

Lemma 5.3.3. Assume there exists a κ ∈ (0, 1] such that for all v ∈ Rn and j ∈ N,

κ ≤ gj(v) ≤ κ−1,

then we have that sup|f |∞≤1

√
E|Ljν − Ljµ| ≤ 2κ−2

√
E|ν − µ|

Theorem 5.4 summarizes the stability results and basically shows that we can get

close to the homology of the optimal smoothed path with the mean particle filter path.

Generically, this path is reflective of the dynamics’ general behavior and may be used to

present bifurcations as parameters are changed in the system.

Theorem 5.4. Assume there is some probability δ ∈ [0, 1] such that discrete dynamics as in

Eqs. (5.1) and (5.2) occur in a region Ω ∈ Rn bounded by R. Assume there exists a κ ∈ (0, 1]

such that for all v ∈ Rn and j ∈ N,

κ ≤ gj(v) ≤ κ−1,

and then we have that with probability δ,

Wp(dgm(µJ), dgm(EωµNJ ) < ε
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where µJ is the optimal smoothed path and EωµNJ is the expected particle filter path with N

particles up to time J . Here ε = O(N−1/2), with constant depending on R, κ, and J , and δ

depending on supx∈Ω|ψ(x)− x| and the distribution of the dynamic noise ξj.

Proof. We have that

sup|f |∞≤1

√
E|µNj+1 − µj+1|2 ≤ sup|f |∞≤1

√
E|LjSNPµNj − LjPµj|2.

By the triangle inequality, the above is bounded by

sup|f |∞≤1

√
E|LjSNPµNj − LjPµNj |2 + sup|f |∞≤1

√
E|LjPµNj − LjPµj|2

By Lemmas 5.3.2 and 5.3.3, this is bounded by

2κ−2(sup|f |∞≤1

√
E|SNPµNj − PµNj |2 + sup|f |∞≤1

√
E|µNj − µj|2)

Applying Lemma 5.3.1, we bound this by

2κ−2(
1√
N

+ sup|f |∞≤1

√
E|µNj − µj|2)

Thus for each 1 ≤ j, we have that

sup|f |∞≤1

√
E|µNj+1 − µj+1|2 ≤ 2κ−2(

1√
N

+ sup|f |∞≤1

√
E|µNj − µj|2)

By Jensen’s inequality with φ(x) = |x|2,

sup|f |∞≤1|EωµNJ (f)− µJ(f)| ≤ sup
|f |∞≤1

√
Eω|µNJ (f)− µJ(f)|2 ≤

J∑
j=1

(2κ−2)j
1√
N

Though the above is for ‖f‖∞ ≤ 1, we can still obtain

|EωµNJ (q)− µJ(q)| ≤ ‖q‖∞
J∑
j=1

(2κ−2)j
1√
N
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for any continuous q.

Since the dynamics occur within a bounded region Ω ⊂ Rn, we can find a value so that

Ω ⊂ B(0, R); taking q to be the identity gives

|EωµNJ − µJ | ≤ R
J∑
j=1

(2κ−2)j
1√
N

with probability δ. Note that EωµNJ is the expectation of the mean smoothed particle filter

estimate, and µJ is the optimal estimate given the data. As we increase the number of

particles µNJ becomes closer to EωµNJ .

Denote ṽj = EµNj and vj = µj. We now apply Theorem 5.3. Notice that dH(Eµ1:J , µN1:J) ≤
C√
N

, and so we have that

Wp(dgm(v), dgm(ṽ)) ≤ 2pTf
C

N
1
2

for all p ≥ d, where Tf is the bound on the total number of features in the persistence

diagrams of f and g. Note that Tf depends only on the total path length J .

5.4 Simulations

In order to experimentally illustrate the importance of above result, we consider several

dynamics under various noise conditions. For each of these experimental trials, we present

the ground truth path and compare it to the particle filter path. Though our Theorem 5.4

establishes a stability relationship between the optimal particle filter path and the expected

particle filter path, it is impossible in practice to observe the optimal particle filter path.

The optimal particle filter path is representative of the ground truth in the case of the

identify observation function. Due to this, we compare the expected particle filter path to

the ground truth location of our simulated dynamics. As a result, the noise of our system

plays an important role in these simulations by gauging the expected difference between

the optimal path and the ground truth. We suspect that the homology of filtered paths

will typically be cleaner than that of the ground truth; however, there are cases when the
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particle filter performs poorly to ascertain the homology of the system when transitions are

categorized by rare events.

We first examine the following system:

xt =

 cos(.1) sin(.1)

−sin(.3) cos(.3)

xt−1(.5 + ((x1
t−1)2 + (x2

t−1)2)/100)−1 + ξt (5.3)

yt = x1
t + ηt (5.4)

where xt ∈ R2, yt ∈ R, xit is the ith component of xt and

ξt ∼ N((0, 0), I) (5.5)

ηt ∼ N((0, 0), I) (5.6)

Figure 5.2: Ground truth path (top left), particle filter path (top right), ground truth
persistence diagram (bottom left), and particle filter path persistence diagram (bottom right)
for Equations (1-4) with dynamic noise variance I.

These dynamics produce an ellipse in R2, as seen in Figure 5.2. Notice that the persistent

homology of the particle filter path is very similar to the persistent homology of the ground
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truth. The Wasserstein Distance between the diagrams is on the scale of the noise and both

diagrams exhibit a prominent cycle.

We now run the same system as above with less noise. In particular, we take the variance

of our dynamic noise to be 0.1I. We demonstrate this in Figure 5.3. The Wasserstein distance

between the diagrams is still on the scale of the noise, which is much smaller in this case.

Figure 5.3: Ground truth path (top left), particle filter path (top right), ground truth
persistence diagram (bottom left), and particle filter path persistence diagram (bottom right)
for Equations (1-4) with dynamic noise variance 0.1I.

Notice in the above examples the initial conditions can be clearly seen inside the circle.

Depending on the choice of initial condition, this can drastically affect the persistent

homology. In practice, it may be a good idea to let the process “burn-in”, discarding some

first number of points in both paths. Finally, we consider a different type of dynamic. In

this case, we consider a one-dimensional bi-stable dynamic given by

xt = 2.5(sin(xt−1))
1
27 + ξt (5.7)

yt = xt + ηt (5.8)
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where xt ∈ R, yt ∈ R, and

ξt ∼ N(0, .4) (5.9)

ηt ∼ N(0, 1) (5.10)

The large root term is chosen to better separate the two stable states. This is demonstrated

in Figure 5.4. Notice that in this case, the ground truth persistent homology seems to do a

better job of picking up the bi-stability in the system than the smoothed path, as opposed

to the above examples.

Figure 5.4: Ground truth path (top left), particle filter path (top right), ground truth
persistence diagram (bottom left), and particle filter path persistence diagram (bottom right)
for Equations (5-8).

5.5 Discussion and Conclusion

We have demonstrated the ability to capture the homology of a dataset and its applicability

to filtering. Such a preliminary investigation opens the way for more sophisticated questions

about the nature and importance of persistent homology. For example, a complex dynamic
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can exhibit different speed at different points along its trajectory. Consequently, the

persistence of features where the dynamic’s speed and noise are small will be emphasized

over features where the dynamic’s speed and noise are large. While the effects of noise are

difficult to manage, the speed of the dynamics are essentially expressed as a relative point

density in the overall path.

Moreover, in future work we will work to establish a stability between the ground truth

and the observed particle filter path. However, we note that in real data this will heavily

depend on the observation function, which often maps the high dimensional dynamic into a

lower dimensional observation space. Due to this, such a bound may be intractable in all but

very simple situations (such as identity or linear observation functions, which are already

well studied Kalman et al. [45]).

In recent works Bubenik [17], Bobrowski and Mukherjee [12], Bobrowski and Weinberger

[13], Bobrowski et al. [14], a concerted effort has been made to apply statistics to the realm of

persistent homology. While Mileyko et al. [60] has defined a probability measure on the set

of persistence diagrams by pushing forward the probabilities of sample sets, this description

offers no insight into the structure or computation of such probability spaces. In order to

truly utilize persistence diagrams, we need some probability distribution that offers several

competing qualities:

• Close to the actual distribution (push-forward).

• Representation as a probability density.

• Computability of random samples.

• Flexibility in the number of topological features present in each sample.

In future work, we will develop a probabilistic framework on the space of persistence

diagrams. Previous attempts to impose structure on the statistics of persistence homology

generally utilize the bottleneck distance. This distance is less sensitive to smaller or multiple

features and can be overly sensitive to outliers. In order to improve the implementation of

topological methods in data analysis, this suggests the need for a more general theory for

defining probabilistic framework from a general metric on the space of persistence diagrams.
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Moreover, defining probability distributions on the space of persistence diagrams would

allow us to study hidden markov model problems where the observations themselves are

persistence diagrams. For example, consider a sensor tracking network in which sensors are

only able to communicate with their local neighbors. This local information is enough to

produce a Vietoris-Rips complex, and thus a persistence diagram, which can be seen as a

summary of the current system state. This information provides insight into the coverage

gaps in the network, giving valuable insight into weaknesses for threat detection.
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