14,503 research outputs found

    High-confidence predictions under adversarial uncertainty

    Get PDF

    SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty Propagation in Encoder-Decoder Networks

    Full text link
    Deep Learning (DL) holds great promise in reshaping the healthcare industry owing to its precision, efficiency, and objectivity. However, the brittleness of DL models to noisy and out-of-distribution inputs is ailing their deployment in the clinic. Most models produce point estimates without further information about model uncertainty or confidence. This paper introduces a new Bayesian DL framework for uncertainty quantification in segmentation neural networks: SUPER-Net: trustworthy medical image Segmentation with Uncertainty Propagation in Encoder-decodeR Networks. SUPER-Net analytically propagates, using Taylor series approximations, the first two moments (mean and covariance) of the posterior distribution of the model parameters across the nonlinear layers. In particular, SUPER-Net simultaneously learns the mean and covariance without expensive post-hoc Monte Carlo sampling or model ensembling. The output consists of two simultaneous maps: the segmented image and its pixelwise uncertainty map, which corresponds to the covariance matrix of the predictive distribution. We conduct an extensive evaluation of SUPER-Net on medical image segmentation of Magnetic Resonances Imaging and Computed Tomography scans under various noisy and adversarial conditions. Our experiments on multiple benchmark datasets demonstrate that SUPER-Net is more robust to noise and adversarial attacks than state-of-the-art segmentation models. Moreover, the uncertainty map of the proposed SUPER-Net associates low confidence (or equivalently high uncertainty) to patches in the test input images that are corrupted with noise, artifacts, or adversarial attacks. Perhaps more importantly, the model exhibits the ability of self-assessment of its segmentation decisions, notably when making erroneous predictions due to noise or adversarial examples

    Pathologies of Neural Models Make Interpretations Difficult

    Full text link
    One way to interpret neural model predictions is to highlight the most important input features---for example, a heatmap visualization over the words in an input sentence. In existing interpretation methods for NLP, a word's importance is determined by either input perturbation---measuring the decrease in model confidence when that word is removed---or by the gradient with respect to that word. To understand the limitations of these methods, we use input reduction, which iteratively removes the least important word from the input. This exposes pathological behaviors of neural models: the remaining words appear nonsensical to humans and are not the ones determined as important by interpretation methods. As we confirm with human experiments, the reduced examples lack information to support the prediction of any label, but models still make the same predictions with high confidence. To explain these counterintuitive results, we draw connections to adversarial examples and confidence calibration: pathological behaviors reveal difficulties in interpreting neural models trained with maximum likelihood. To mitigate their deficiencies, we fine-tune the models by encouraging high entropy outputs on reduced examples. Fine-tuned models become more interpretable under input reduction without accuracy loss on regular examples.Comment: EMNLP 2018 camera read
    • …
    corecore