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High-Confidence Predictions under Adversarial Uncertainty

Andrew Drucker∗

Abstract

We study the setting in which the bits of an unknown infinite binary sequence x are revealed
sequentially to an observer. We show that very limited assumptions about x allow one to
make successful predictions about unseen bits of x. First, we study the problem of successfully
predicting a single 0 from among the bits of x. In our model we have only one chance to make
a prediction, but may do so at a time of our choosing. This model is applicable to a variety of
situations in which we want to perform an action of fixed duration, and need to predict a “safe”
time-interval to perform it.

Letting Nt denote the number of 1s among the first t bits of x, we say that x is “ε-weakly
sparse” if lim inf(Nt/t) ≤ ε. Our main result is a randomized algorithm that, given any ε-weakly
sparse sequence x, predicts a 0 of x with success probability as close as desired to 1−ε. Thus we
can perform this task with essentially the same success probability as under the much stronger
assumption that each bit of x takes the value 1 independently with probability ε.

We apply this result to show how to successfully predict a bit (0 or 1) under a broad class of
possible assumptions on the sequence x. The assumptions are stated in terms of the behavior
of a finite automaton M reading the bits of x. We also propose and solve a variant of the
well-studied “ignorant forecasting” problem. For every ε > 0, we give a randomized forecasting
algorithm Sε that, given sequential access to a binary sequence x, makes a prediction of the
form: “A p fraction of the next N bits will be 1s.” (The algorithm gets to choose p, N , and the
time of the prediction.) For any fixed sequence x, the forecast fraction p is accurate to within
±ε with probability 1− ε.

1 Introduction

Suppose that the bits of an unknown infinite binary sequence x = (x1, x2, . . .) are revealed to us
sequentially, and our goal is to make a nontrivial prediction about unseen bits. As a canonical
example (which we will study closely), suppose we wish to make a single, successful prediction that
some unseen bit of our choosing will be 0. This generic “0-prediction” task is applicable in many
settings. In particular, it applies whenever we are trying to predict some “safe” time to perform
some action of unit-duration, based on past observations: here, [xt = 0] represents safe conditions
during the tth possible time-slot for our action, while [xt = 1] represents dangerous (unacceptable)
conditions. Note that we model time as discrete, and model “safety” as an all-or-nothing matter.

∗Institute for Advanced Study, Princeton NJ. Email: andy.drucker@gmail.com. The author is currently sup-
ported by the National Science Foundation, under grants CCF-0832797, Sub-Contract No. 00001583, and DMS-
0835373. Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This research was conducted
as a Ph.D. student at Massachusetts Institute of Technology, EECS Dept., and was supported by a DARPA YFA
grant of Scott Aaronson.
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If after observing x1, . . . , xt−1 we predict “xt = 0,” and our prediction is false, we regard this as a
catastrophic failure. Similarly, if we observe the entire infinite sequence, without ever announcing
a 0-prediction, this is also regarded as a failure.

We ask: under what assumptions on the sequence x can we make a correct 0-prediction and per-
form our action safely? Obviously, if x is all-1s then we cannot, so we must make some assumption.
One natural approach to this kind of situation is to assume the sequence x is generated according
to some probabilistic model. For example, we might assume that each bit represents the outcome
of an independent coin toss with some fixed bias p. More complicated probabilistic assumptions,
involving dependence between the bits, can also be considered.

However, in applications we may be unlikely to have a detailed idea of how the bits of x are
generated. It may be that rather than having a probabilistic model in mind, we merely know or
conjecture some constraint obeyed by x. We then ask whether there exists a strategy which allows
successful 0-prediction (at least, with sufficiently high probability), for any sequence obeying the
constraint. This model will be our focus in the present paper.

For example, suppose that based on initial observations, the bits of x seem individually to equal
1 with probability at most .05, but that we suspect they are not fully independent. In such cases,
we may make the weaker assumption that the limiting density of 1s is at most .05. Note that this
condition holds with probability 1 if the bits are generated by independent .05-biased trials, so
our limiting-density constraint can be considered a natural relaxation of this simple probabilistic
model. We may then ask whether there exists a strategy that allows a successful 0-prediction with
success probability nearly .95 under this relaxed assumption. (Happily, the answer is Yes; this will
follow from our main result.)

1.1 Relation to previous work

Our work studies prediction under adversarial uncertainty. In such problems, an observer tries to
make predictions about successive states of nature, without assuming that these states are governed
by some known probability distribution. Instead, nature is regarded as an adversary who makes
choices in an attempt to thwart the observer’s prediction strategy. The focus is on understanding
what kinds of predictions can be made under very limited assumptions about the behavior of nature.

Adversarial prediction is a broad topic, but two strands of research are particularly related to
our work. The first strand is the study of gales and their relatives. Gales are a class of betting
systems generalizing martingales; their study is fundamental for the theory of effective dimension
in theoretical computer science (see [Hem05] for a survey). The basic idea is as follows. An infinite
sequence x is chosen from some known subset A of the space {0, 1}ω of infinite binary sequences.
A gambler is invited to gamble on predicting the bits of x as they are sequentially revealed; the
gambler has a finite initial fortune and cannot go into debt. The basic question is, for which subsets
A can the gambler be guaranteed long-term success in gambling, for any choice of x ∈ A? This
question can be studied under different meanings of “success” for the gambler, and under more- or
less-favorable classes of bets offered by the casino.

Intuitively, the difficulty of gambling successfully on an unknown x ∈ A is a measure of the
“largeness” of the set A. In fact, this perspective was shown to yield new characterizations of
two important measures of fractal dimensionality. Lutz [Lut03a] gave a characterization of the
Hausdorff dimension of subsets of {0, 1}ω in terms of gales, while Athreya, Hitchcock, Lutz, and
Mayordomo [AHLM07] showed a gale characterization of the packing dimension. These works also
investigated gales with a requirement that the gambler follows a computationally bounded betting
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strategy; using such gales, the authors explored new notions of “effective dimension” for complexity
classes in computational complexity theory.1

The second strand of related work is the so-called forecasting problem in decision theory (see
[Daw82] for an early, influential discussion). In this problem, an infinite binary sequence x ∈ {0, 1}ω
is once again revealed sequentially; we typically think of the t-th bit as indicating whether it rained
on the t-th day at some location of interest. Each day a weather forecaster is asked to give, not an
absolute prediction of whether it will rain tomorrow, but instead some estimate of the probability
of rain tomorrow. In order to keep his job, the forecaster is expected to make forecasts which are
calibrated : roughly speaking, this means that if we consider all the days for which the forecaster
predicted some probability p of rain, about a p fraction turn out rainy (see [FV98] for more precise
definitions).

In the adversarial setting, a forecaster must make such forecasts without knowledge of the
probability distribution governing nature. An extreme case is the well-studied “ignorant forecaster”
model, in which the forecaster is allowed no assumptions whatsoever about the sequence x. It is
a remarkable fact, shown by Foster and Vohra [FV98], that there exists a randomized ignorant
forecasting scheme whose forecasts are calibrated in the limit.

This result was extended by Sandroni [San03]. The calibration criterion is just one of many
conceivable “tests” with which we might judge a forecaster’s knowledge on the basis of his forecasts
and the observed outcomes. Foster and Vohra’s result showed that the calibration test can be
passed even by an ignorant forecaster; but conceivably some other test of knowledge could be
more meaningful. A reasonable class of tests to consider are those that can be passed with some
high probability 1 − ε by a forecaster who knows the actual distribution D governing nature, for
any possible setting of D. However, Sandroni showed that any such test can also be passed with
probability 1 − ε by an ignorant forecaster! Fortnow and Vohra [FV09] give evidence that the
ignorant strategies provided by Sandroni’s result cannot in general be computed in polynomial
time, even if the test is polynomial-time computable.2

In both of the strands of research described above, researchers have typically looked for pre-
diction schemes that have some desirable long-term, aggregate property. In the gale setting, the
focus is on betting strategies that may lose money on certain bets, but that succeed in the limit;
in the forecasting problem, an ignorant forecaster wants his forecasts to appear competent overall,
but is not required to give definite predictions of whether or not it will rain on any given day. By
contrast, in our 0-prediction problem, we want to perform an action successfully just once, and
we stake everything on the outcome. Our focus is on making a single prediction, with success
probability as close to 1 as possible.3

In a later section of the paper we will also study a variant of the ignorant forecasting scenario.

1Computationally bounded betting and prediction schemes have also been used to study individual sequences
x, rather than sets of sequences. This approach has been followed using various resource bounds and measures of
predictive success; see, e.g., [MF98, Lut03b].

2The tests considered in [San03, FV09] are required to halt with an answer in finite time. See [FV09] for references
to work in which this restriction is relaxed.

3The distinction between our single-prediction setting and multiple-prediction models is not absolute, however. In
particular, as will be apparent from our work, the algorithms we develop can also be used to make multiple predictions,
with provable success guarantees on certain classes of sequences. The single-prediction model we study can also be
re-interpreted as a particular type of gambling system making bets at every step. Namely, single-prediction strategies
correspond, in a natural way, to gambling schemes in a casino where reinvestment of winnings is disallowed. This
connection, and its relation to certain work in regret-bounded prediction algorithms, e.g. [KP11], will be discussed in
Section 4.5.
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Following [FV98, San03], we will make no assumption about the observation sequence x. Our goal
will be to make a single forecast at a time of our choosing, of the following form: “A p fraction
of the next N observations will take the value 1.” We will seek to maximize the accuracy of our
prediction, as well as the likelihood of falling within the desired accuracy. This forecasting variant
is conceptually linked to our 0-prediction problem by its focus on making a single prediction with
high confidence.

1.2 Our results on the 0-prediction problem

To appreciate the kinds of prediction-strategies that are possible, let us first consider a simple but
instructive example. Suppose we know that at most one bit will ever equal 1. Even under this
very-restrictive assumption, it is not hard to see that any deterministic 0-prediction strategy must
fail on some sequences (either by making an incorrect prediction, or by waiting forever to see a 1
that never arrives). Thus, we are naturally led to consider a randomized strategy. Fixing some
δ > 0, consider the strategy which chooses a value t? ∈ {1, 2, . . . , d1/δe} uniformly, and makes a
0-prediction at time t?. One can verify that this strategy fails with probability at most d1/δe−1 ≤ δ.

Note that this error probability is over the randomness in the algorithm, not the sequence x;
we regard the sequence as chosen by an adversary who knows the prediction strategy, but not the
outcomes of the strategy’s randomness. We are interested in strategies which succeed with high
probability against any choice by the adversary (obeying the assumed constraint).

An easy modification of the above algorithm lets the us succeed with probability 1− δ against
a sequence promised to contain at most M 1s, for any fixed M < ∞. However, it may come as
a surprise that we can succeed in the 0-prediction task with probability 1− δ under much weaker
assumptions. For example, we can do so under the assumption that the number of 1s is merely
finite, with no upper bound M known in advance. In fact, we can handle an infinite number of
1s and still make a 0-prediction successfully, under the assumption that their limiting density is 0;
that is, under the assumption that limt→∞

1
t

∑
1≤i≤t xi = 0.

For any ε > 0, say that a sequence is ε-weakly sparse if

lim
s→∞

inf
t≥s

1

t

∑
1≤i≤t

xi ≤ ε.

Our main result on 0-prediction is that there is a prediction strategy S = Sε that makes a 0-
prediction with successfully with probability as close as desired to 1−ε, under the assumption that
the sequence x given is ε-weakly sparse. (Simple examples show that this is optimal.) We state our
result formally in Section 2, after setting up the necessary definitions. This result easily implies our
claim that successful 0-predictions can be performed on sequences with finitely many 1s or with
limiting density 0, although these special cases can also be handled more simply.

We feel that the techniques used to prove this result are of independent interest, and could find
other applications. The basic idea of our 0-prediction strategy is easy to state. The prediction
strategy maintains a stack of “chips;” observing 0s increases the stack height, while observing
1s decreases it. The height of the stack at a given time reflects the algorithm’s “courage,” and
determines its likelihood to predict a 0. While this basic approach is intuitive, implementing it
correctly and proving the strategy’s correctness is a delicate task. Our analysis involves a careful
study of individual chips’ contributions to the success and failure probabilities.

Our result bears some resemblance to known results in dimension theory. Let Aε−ws ⊆ {0, 1}ω
denote the set of ε-weakly sparse infinite binary sequences. Eggleston [Egg49, Bil65] showed that
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for ε ≤ 1/2, the Hausdorff dimension of Aε−ws is equal to the binary entropy H(ε). More recently,
Lutz [Lut03a] gave an alternative proof using his gale characterization of Hausdorff dimension (Lutz
also calculated the “effective dimension” of Aε−ws according to several definitions). Lutz upper-
bounds the Hausdorff dimension of Aε−ws by giving a gale betting strategy that “succeeds” (in the
appropriate sense) against all x ∈ Aε−ws. This betting strategy, which is simple and elegant, does
not appear to be applicable to our problem.

1.3 Further results

In Section 4, we prove a variant of our result on 0-prediction, in a a modified setting in which we
are allowed to predict either a 0 or a 1. We define a condition on the binary sequence x that is
significantly more general than ε-weak sparsity as defined in Section 1.2, and that still allows a bit
to be predicted with high confidence. The condition is stated in terms of a finite automaton M that
reads x: we assume that x causes M to enter a designated set of “bad” states B only infrequently.
A certain “strong accessibility” assumption on the set B is needed for our result. Also, we caution
that our algorithm’s success guarantee in this problem is not as quantitatively strong as our result
on 0-prediction; this is unavoidable, as will be shown.

Next, in Section 5, we study a problem closely related to the “ignorant forecasting” problem
discussed earlier, where (as in the 0-prediction problem) a single prediction is to be made. In the
“density prediction game,” an arbitrary infinite binary sequence is chosen by Nature, and its bits
are revealed to us sequentially. Our goal is to make a single forecast of the form

“A p fraction of the next N bits will be 1s.”

We are allowed to choose p,N , and the time at which we make our forecast.
Fixing a binary sequence x, we say that a forecast described by (p,N), and made after viewing

xt, is ε-successful on x if the fraction of 1s among xt+1, . . . , xt+N is in the range (p − ε, p + ε).
For δ, ε > 0, we say that a (randomized) forecasting strategy S is (δ, ε)-successful if for every
x ∈ {0, 1}ω,

Pr[S is ε-successful on x] ≥ 1− δ.

In Section 5 we show the following, perhaps surprising, result:

Theorem 1. For any δ, ε > 0, there exists a (δ, ε)-successful forecasting strategy.

The proof uses a (seemingly folklore) technique from the analysis of martingales. My under-
standing of this technique benefited greatly from conversations with Russell Impagliazzo.

2 Preliminaries and the Main Theorem

First we develop a formal basis to state and prove our main result on 0-prediction. N = {1, 2, . . .}
denotes the positive whole numbers. For N ∈ N, [N ] denotes the set {1, 2, . . . , N}. {0, 1}ω denotes
the set of all infinite bit-sequences b = (b1, b2, . . .).

A 0-prediction strategy is a collection

S = {πS,b : b ∈ {0, 1}ω},
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where each πS,b is a probability distribution over N∪{∞}. We require that for all b = (b1, b2, . . .), b
′ =

(b′1, b
′
2, . . .), and all i ∈ N,

(b1, . . . , bi−1) = (b′1, . . . , b
′
i−1)⇒ πS,b(i) = πS,b′(i). (1)

That is, πS,b(i) depends only on b1, . . . , bi−1.
Let us interpret the above definition. A 0-prediction strategy defines, for each sequence b and

each i ∈ N, a probability πS,b(i) that, when facing the sequence b, the predictor will make the
prediction “bi = 0.” There is also some probability πS,b(∞) that the predictor will wait forever
without making a prediction. Whether it succeeds or fails, the strategy only makes a prediction at
most once, so these probabilities sum to 1. Eq. (1) requires that the decision whether to predict a
0 at position i depends only upon what it has seen of the sequence during the first (i − 1) steps.
The strategies we analyze in this paper will be defined in such a way that Eq. (1) obviously holds.

Given a 0-prediction strategy S, define the success probability

Suc(S, b) :=
∑

i∈N:bi=0

πS,b(i)

as the probability that, facing b, the strategy makes a successful 0-prediction. Similarly, define the
false-guess probability

False(S, b) :=
∑

i∈N:bi=1

πS,b(i) = 1− Suc(S, b)− πS,b(∞)

as the probability that the strategy S leads to an incorrect 0-prediction on sequence b. For a subset
A ⊆ {0, 1}ω, define

Suc(S, A) := inf
b∈A

Suc(S, b).

We can now formally state our main result on 0-prediction:

Theorem 2. Fix ε ∈ (0, 1) and let Aε−ws := {b : b is ε−weakly sparse}. Then for all γ > 0, there
exists a strategy Sε,γ such that

Suc(Sε,γ , Aε−ws) > 1− ε− γ.

Furthermore, Sε,γ has the following “safety” property: for any sequence b ∈ {0, 1}ω, the false-guess
probability False(S, b) is at most ε+ γ.

It is not hard to see that Theorem 2 is optimal for 0-prediction strategies against Aε−ws. For
consider a randomly generated sequence bbb where the events [bbbi = 1] occur independently, with
E[bbbi] = min{1, ε+ 2−i}. Then [limt→∞(bbb1 + . . .+bbbt)/t = ε] occurs with probability 1. On the other
hand, any 0-prediction strategy S has success probability less than 1− ε against bbb. Thus, for any
S we can find a particular sequence b for which limt→∞(b1 + . . .+ bt)/t = ε and which causes S to
succeed with probability less than 1− ε.

3 Proof of Theorem 2

First we observe that, if we can construct a strategy S such that Suc(S, Aε−ws) > 1− ε− γ, then
the “safety” property claimed for S in the theorem statement will follow immediately. For suppose
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to the contrary that some sequence b ∈ {0, 1}ω satisfies False(S, b) > ε + γ. Then there exists
m ∈ N such that

∑
i≤m:bi=1 πS,b(i) > ε+ γ. If we define b′ ∈ {0, 1}ω by

b′i :=

{
bi if i ≤ m,
0 if i > m,

then b′ ∈ Aε−ws and False(S, b′) > ε+ γ, contradicting our assumption on S.
To construct the strategy S, we use a family of 0-prediction strategies for attempting to make

a 0-prediction within a finite, bounded interval of time. The following lemma is our key tool, and
is interesting in its own right.

Lemma 1. For any δ ∈ (0, 1) and integer K > 1, there exists a strategy T = TK,δ such that for all
b ∈ {0, 1}ω:

(i) The 0-prediction time of T is always in [K] ∪ {∞}. That is, for K < i < ∞, we have
πT ,b(i) = 0;

(ii) If (b1 + . . .+ bK−1)/(K − 1) ≤ δ′ < δ, then πT ,b(∞) ≤ 1− Ω((δ − δ′)2/δ);

(iii) The false-guess probability satisfies

False(T , b) ≤ δ

1− δ
Suc(T , b) +O

(
δ

(1− δ)K

)
.

We defer the proof of Lemma 1, and use it to prove Theorem 2.

of Theorem 2. Fix settings of ε, γ > 0; we may assume ε+ γ < 1, or there is nothing to prove. Let
ε1 := ε + γ/3, ε2 := ε + 2γ/3. We also use a large integer K > 1, to be specified later. Divide
N into a sequence of intervals I1 = {1, 2, . . . ,K}, I2 = {K + 1, . . . , 5K}, and so on, where Ir has
length r2K.

Let S = Sε,γ be the 0-prediction strategy which does the following: first, follow the strategy
TK,ε2 (as given by Lemma 1) during the time interval I1. If no 0-prediction is made during these
steps, then run the strategy T4K,ε2 on the interval I2, after shifting the indices of I2 appropriately
(so that T4K,ε2 considers its input sequence to begin on bK+1). Similarly, for each r > 0, if we
reach the interval Ir without a 0-prediction, we execute the strategy Tr2K,ε2 on the interval Ir, after
shifting indices appropriately.

We will show that if K is sufficiently large, we have Suc(S, Aε−ws) > 1 − ε − γ as required.
Fix any b = (b1, b2, . . .) ∈ Aε−ws. Let αr :=

(∑
i∈Ir bi

)
/|Ir| be the fraction of 1-entries in b during

interval Ir. We will use the following easy claim:

Claim 1. For infinitely many r, αr ≤ ε1.

Proof. Suppose to the contrary that αr > ε1 when r ≥ R. Consider an interval {1, 2, . . . ,M} large
enough to properly contain I1, I2, . . . , IR. Let t ≥ R be such that It ⊆ [M ] but that It+1 * [M ].
Let α? be the fraction of 1-entries in [M ] ∩ It+1; we set α? := 0 if [M ] ∩ It+1 = ∅. With NM =
(b1 + . . .+ bM ), we have the expression

NM

M
=
∑
r≤t

|Ir|
M
· αr +

|[M ] ∩ It+1|
M

· α?
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which expresses the 1-density (fraction of 1s) in b in the positions {1, . . . ,M} as a weighted average
of the 1-densities in I1, . . . , It and in [M ] ∩ It+1.

Note that
|[M ] ∩ It+1|

M
≤ |It+1|

M
≤ (t+ 1)2K∑

r≤t r
2K

= O(1/t)→ 0,

as M →∞. Now αr > ε1 when r ≥ R, so for sufficiently large M we have NM/M ≥ (ε1 +ε)/2 > ε.
But this contradicts the fact that b ∈ Aε−ws, proving the Claim.

Fix r > 0. If Ir = {j, . . . , k} and αr = (bj + . . .+ bk)/(k − j + 1) ≤ ε1, then we also have

(bj + . . .+ bk−1)/(k − j) < ε+ γ/2 (2)

if r is large enough. Say that the interval Ir is good if Eq. (2) holds; it follows from Claim 1 that
there are infinitely many good intervals.

Condition (ii) of Lemma 1 tells us that if our 0-prediction strategy S reaches a good interval Ir,
it will make a 0-prediction during Ir with probability Ω((γ/6)2/ε2). Thus for L > 0, the probability
that S passes through L distinct good intervals Ir1 , . . . , IrL without making a 0-prediction is at most
(1−Ω((γ/6)2/ε2))

L, which approaches 0 as L→∞. It follows that the strategy eventually makes
a 0-prediction with probability 1, and that False(S, b) = 1− Suc(S, b).

For r > 0, let Pr = Pr(b) be defined as the probability that S reaches Ir without making a
0-prediction earlier (about some position occurring before Ir). Let b[Ir] denote the sequence b,
shifted to begin at the first bit of Ir. Then we can reexpress the false-guess probability of S on b,
and bound this quantity, as follows:

False(S, b) =
∑
r≥1

Pr · False(Tr2K,ε2 , b[Ir])

≤
∑
r≥1

Pr ·
(

ε2
1− ε2

Suc(Tr2K,ε2 , b[Ir]) +O

(
ε2

(1− ε2)r2K

))
(by condition (iii) of Lemma 1)

=
ε2

1− ε2

∑
r≥1

Pr · Suc(Tr2K,ε2 , b[Ir])

+O

(
ε2

(1− ε2)K

)
(using the fact that

∑
r>0

r−2 <∞)

=
ε2

1− ε2
Suc(S, b) +O

(
ε2

(1− ε2)K

)
.

Thus, False(S, b) = 1− Suc(S, b) ≤ ε2
1−ε2 Suc(S, b) +O

(
ε2

(1−ε2)K

)
, which implies

Suc(S, b) ≥ 1− ε2 −O
(ε2
K

)
= 1− (ε+ 2γ/3)−O

(ε2
K

)
.

By setting K � ε2γ
−1 sufficiently large, we can conclude Suc(S, b) > 1− ε− γ, where the slack in

the inequality is independent of the choice of b ∈ Aε−ws. This proves Theorem 2.
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of Lemma 1. By an easy approximation argument, it suffices to prove the result for the case when
δ is rational. So assume

δ = p/d,

for some integers 0 < p < d, and let
q := d− p.

The 0-prediction strategy T is as follows. First, pick a value t? ∈ [K] uniformly at random. Do
not make any 0-predictions for steps 1, 2, . . . , t? − 1. During this time, maintain an ordered stack
of “chips,” initially empty. For 1 ≤ i < t?, after viewing bi, if bi = 0 then add p chips to the top of
the stack; if bi = 1 then remove q chips from the top of the stack—or, if the stack contains fewer
than q chips, remove all the chips. After this modification to the stack, we say that the bit bi has
been “processed.”

For 0 ≤ i ≤ K−1, let Hi denote the number of chips on the stack after processing b1, . . . , bi (so,
H0 = 0). After processing bt?−1, sample from a 0/1-valued random variable X, with expectation

E[X] :=
Ht?−1
dK

.

(Note that this expectation is at most p(K−1)
dK < 1, so the definition makes sense.) Predict a 0 at

step t? if X = 1, otherwise make no prediction at any step.
Note that the variable Ht can be regarded as a measure of the strategy’s “courage” after

processing b1, . . . , bt, as in our sketch-description in Section 1.2. We now verify that T has the
desired properties. Condition (i) in Lemma 1 is clearly satisfied. Before verifying conditions (ii)
and (iii), we first sketch why they hold. For (ii), the idea is that if much less than a δ fraction of
b1, . . . , bK−1 are 1s, then the stack of chips will be of significant height after processing these bits.
Since the stack doesn’t grow too quickly, we conclude that the average stack height during these
steps is significant, which implies that the strategy makes a prediction with noticeable probability.

For (iii), the idea is that for any chip c, if c stays on the stack for a significant amount of time,
then the fraction of 1s appearing during the interval in which c was on the stack must be not much
more than δ. Thus c’s contribution to the false-guess probability is not much more than δ/(1− δ)
times c’s contribution to the success probability. On the other hand, chips c which don’t stay on
the stack very long make only a small contribution to the false-guess probability.

Now we formally verify condition (ii). Fix some sequence b. First note that the placement
and removal of chips, and the height sequence H0, . . . ,HK−1, can be defined in terms of b alone,
without reference to the algorithm’s random choices. Throughout our analysis we consider the stack
to continue to evolve as a function of the bits b1, . . . , bK−1, regardless of the algorithm’s choices.

Suppose b1 + . . . + bK−1 ≤ δ′(K − 1), where δ′ < δ; we ask, how large can πT ,b(∞) be? From
the definition of T , we compute

πT ,b(∞) = 1− 1

K

∑
t∈[K]

Ht−1
dK

= 1− 1

dK2

∑
0≤t<K

Ht. (3)

Now, for a chip c, let mc ∈ N denote the number of indices i < K for which c was on the stack
immediately after processing bi. (We consider each chip to be “unique;” that is, it is added to the
stack at most once.) We can reexpress the sum appearing in Eq. (3) as∑

0≤t<K
Ht =

∑
c

mc.

9



We will lower-bound this sum by considering the contribution made by chips that are never removed
from the stack—that is, chips which remain after processing bK−1. We call such chips “persistent.”
First, we argue that there are many persistent chips. By our assumption, at least p · (1− δ′)(K−1)
chips are added to the stack in total, while at most q · δ′(K − 1) chips are ever removed. Thus the
number of persistent chips is at least

p(1− δ′)(K − 1)− qδ′(K − 1) = p(1− δ + (δ − δ′))(K − 1)− q(δ + (δ′ − δ))(K − 1)

= [p(1− δ)− qδ︸ ︷︷ ︸
=0

+ (p+ q)︸ ︷︷ ︸
=d

(δ − δ′)](K − 1)

= (δ − δ′)d(K − 1),

where we used p/q = δ/(1− δ). Let J := (δ − δ′)d(K − 1).
Pick any J persistent chips, and number them c(1), . . . , c(J) so that j′ < j ≤ J implies c(j′)

appears above c(j) on the stack after processing bK−1. This means c(j′) was added to the stack
no earlier than c(j), so that mc(j′) ≤ mc(j). At most p chips are added for every processed bit of b,
and if c(j) was added while processing the (K − i)-th bit, then mc(j) = i. Thus, by our indexing
we conclude mc(j) ≥ dj/pe ≥ j/p. Summing over j, we obtain

∑
persistent c

mc ≥
J∑
j=1

j/p =
J(J + 1)

2p
>

(δ − δ′)2d2(K − 1)2

2p
=

(δ − δ′)2d(K − 1)2

2δ
.

Finally, returning to Eq. (3), we compute

πT ,b(∞) = 1− 1

dK2

∑
c

mc < 1− 1

dK2
· (δ − δ′)2d(K − 1)2

2δ
< 1− (δ − δ′)2

8δ
,

since K > 1. This establishes condition (ii).
Now we verify condition (iii). Fix any sequence b. From our definitions, we have the expressions

Suc(S, b) =
1

K

∑
t∈[K]:bt=0

Ht−1
dK

, False(S, b) =
1

K

∑
t∈[K]:bt=1

Ht−1
dK

, and so

False(S, b)− (p/q) Suc(S, b) =
1

dK2

 ∑
t∈[K]:bt=1

Ht−1 −
∑

t∈[K]:bt=0

(p/q)Ht−1

 . (4)

We regard the quantity Ht−1 as being composed of a contribution of 1 from each of the chips on
the stack after processing bt−1. We rewrite the right-hand side of Eq. (4) as a sum of the total
contributions from each chip. For a chip c, and for z ∈ {0, 1}, let

nc,z := |{t ∈ [K] : bt = z, and c is on the stack immediately after processing bt−1}| .

We then have

False(S, b)− (p/q) Suc(S, b) =
1

dK2

∑
c

(nc,1 − (p/q)nc,0). (5)

Fix attention to some chip c, which was placed on the stack while processing the ic-th bit, for
some ic ∈ [K − 1]. First assume that c was later removed from the stack, and let jc ∈ [K − 1] be

10



the index of the bit whose processing caused c to be removed (thus, bjc = 1). Then the stack was
not empty after processing bits ic, . . . , jc − 1, since in particular, the stack contained c. Thus each
1 appearing in (bic+1, . . . bjc−1) caused exactly q chips to be removed from the stack. The removal
caused by [bjc = 1] removes some number rc ≤ q of chips. Also, each 0 appearing in the same
range causes p chips to be added. Now nc,0, nc,1 count the number of 0s and 1s respectively among
(bic+1, . . . , bjc). Thus we have

Hjc −Hic = pnc,0 − q(nc,1 − 1)− rc ≤ pnc,0 − q(nc,1 − 1),

or rearranging,
nc,1 − (p/q)nc,0 ≤ (Hic −Hjc)/q + 1. (6)

The chip c is added to the stack with p− 1 other chips while processing bit ic. Later, c is removed
from the stack when processing bit jc, along with at most q − 1 other chips. Thus we have

Hic −Hjc ≤ p+ q − 1,

and combining this with Eq. (6) gives

nc,1 − (p/q)nc,0 ≤ (p+ q − 1)/q + 1 < p/q + 2. (7)

Next suppose c was added after processing bit ic ∈ [K − 1], but never removed from the stack.
Then the stack was nonempty after processing bit ic and remained nonempty from then on, so each
1 in bic+1, . . . , bK−1 caused exactly q chips to be removed. By reasoning similar to the previous
case, we get

nc,1 − (p/q)nc,0 = (Hic −HK−1)/q.

Now, c was added along with p−1 other chips after processing bic , and c remains on the stack after
processing bK−1. It follows that Hic −HK−1 ≤ p− 1, so

nc,1 − (p/q)nc,0 ≤ (p− 1)/q. (8)

Plugging Eqs. (7) and (8) into Eq. (5), we bound

False(S, b)− (p/q) Suc(S, b) < 1

dK2

∑
c

(p/q + 2) <
p2/q + 2p

dK

(since at most p(K − 1) chips are ever used)

=
1

K

(
p

q
· p
d

+
2p

d

)
=

1

K

(
δ

1− δ
· δ + 2δ

)
= O

(
δ

(1− δ)K

)
.

Since (p/q) = δ/(1− δ), this establishes condition (iii), and completes the proof of Lemma 1.

4 Prediction under automata-based assumptions

In this section we present an variant of Theorem 2 that is able to predict single bits from classes of
binary sequences that are modeled upon the 0-weakly sparse sequences (ε-weak sparsity is defined
in Section 1.2; here we are setting ε := 0), but that are significantly more general.
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4.1 Bit-prediction algorithms

Our result concerns a problem in which a predictor is asked to correctly predict a single bit of their
choice from a sequence x. Unlike the 0-prediction problem, here the predictor is allowed to predict
either a 0 or a 1. Thus we need to modify our definition of 0-prediction strategies (in the obvious
way), as follows. A bit-prediction strategy is a collection

S = {πS,b : b ∈ {0, 1}ω},

where each πS,b is now a probability distribution over (N× {0, 1}) ∪ {∞}. We require that for all
b = (b1, b2, . . .), b

′ = (b′1, b
′
2, . . .), and all i ∈ N, z ∈ {0, 1},

(b1, . . . , bi−1) = (b′1, . . . , b
′
i−1)⇒ πS,b((i, z)) = πS,b′((i, z)).

That is, πS,b((i, z)) depends only on b1, . . . , bi−1. As in the 0-prediction setting, our bit-prediction
strategies will be defined so that this constraint clearly holds.

Define the success probability

Sucbit-pred(S, b) :=
∑
i∈N

πS,b((i, bi))

as the probability that S correctly predicts a bit of b. For a subsetA ⊆ {0, 1}ω, define Sucbit-pred(S, A) :=
infb∈A Sucbit-pred(S, b).

4.2 Finite automata

To state our result, we need the familiar notion of a finite automaton over a binary alphabet.
Formally, this is a 3-tuple M = (Q, s,∆), where:

• Q is a finite set of states;

• s ∈ Q is the designated starting state;

• ∆ : Q× {0, 1} → Q is the transition function.

For q ∈ Q, B ⊆ Q, say that B is accessible from q if there exists a sequence y1, . . . , ym of bits and
a sequence q0 = q, q1, . . . , qm of states, such that

1. ∆(qi, yi+1) = qi+1 for i = 0, 1, . . . ,m− 1;

2. qm ∈ B.

Say that B is strongly accessible if, for any state q that is accessible from the starting state s, B is
accessible from q.

Finite automata operate on infinite sequences x ∈ {0, 1}ω as follows: we let q0(x) := s, and
inductively for t ≥ 1 we define

qt(x) := ∆(qt−1(x), xt).

We say that qt(x) is the state of M after t steps on the sequence x.
For a state q ∈ Q we define Vq(x), the visits to q on x, as

Vq(x) := {t ≥ 0 : qt(x) = q}.

Similarly, for B ⊆ Q, define VB(x) as VB(x) := {t ≥ 0 : qt(x) ∈ B}.

12



4.3 Statement of the result

Say we are presented with the bits of some unknown x ∈ {0, 1}ω sequentially. We assume that x is
“nice” in the following sense: for some known finite automaton M , there is a proper subset B ⊂ Q
of “bad” states of M , which we assume M visits only infrequently when M is run on x. We show
that, if B is strongly accessible, we can successfully predict a bit of x with high probability.

In this section we say that a sequence x is weakly sparse if it is 0-weakly sparse as defined in
Section 1.2, i.e., if

lim
s→∞

inf
t≥s

1

t

∑
1≤i≤t

xi = 0.

We say that a subset S ⊆ {0, 1, 2, . . .} is weakly sparse if its characteristic sequence is weakly sparse.
We prove:

Theorem 3. Let M = (Q, s,∆) be a finite automaton, and let B ⊂ Q be a strongly accessible
proper subset of states. Define

AB,ws := {x ∈ {0, 1}ω : VB(x) is weakly sparse} ,

and assume AB,ws is nonempty. Then for all ε > 0, there exists a bit-prediction strategy S = Sε
such that

Sucbit-pred(S, AB,ws) > 1− ε. (9)

S also has the “safety” property that for any x ∈ {0, 1}ω, the probability that P outputs an incorrect
bit-prediction on x is less than ε.

We make a few remarks before proving Theorem 3. First, simple examples show that the
conclusion of Theorem 3 can hold even in some cases where B is not strongly accessible. Finding
necessary and sufficient conditions on B could be an interesting question for future study.

Second, it is natural to ask whether a more “quantitative” version of Theorem 3 can be given.
Let AB,ε−ws be the set of sequences x for which the characteristic sequence of VB(x) is ε-weakly
sparse. If B is strongly accessible then, by a slight modification of our proof of Theorem 3, one can
derive a bit-prediction strategy S such that

Sucbit-pred(S, AB,ε−ws) > 1−O
(
`ε1/`

)
,

where ` = |Q| is the number of states of the automaton M .
Something like this weak form of dependence on ε is essentially necessary, as can be seen from

the following example. Let M be an automaton with states Q = {1, 2, . . . , `}, and define

∆(i, 1) := min{i+ 1, `}, ∆(i, 0) := 1.

Let B := {`}, and consider running M on a sequence bbb of independent unbiased bits. Then with
probability 1, VB(bbb) is 2−`+1-weakly sparse. On the other hand, no strategy can predict a bit of bbb
with success probability greater than 1/2.
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4.4 Proof of Theorem 3

Let Aws ⊆ {0, 1}ω denote the set of weakly sparse sequences. Given a sequence x = (x1, x2, . . .),
define ¬x := (¬x1,¬x2, . . .). Say that x is co-weakly sparse, and write x ∈ Aco−ws, if ¬x ∈ Aws. To
prove Theorem 3, we need two lemmas. The following lemma follows easily from Theorem 2:

Lemma 2. Given δ > 0, there exists a bit-prediction strategy P = Pδ such that

Sucbit-pred(P, Aws ∪Aco−ws) > 1− δ.

P also has the “safety” property that for any x ∈ {0, 1}ω, the probability that P outputs an incorrect
bit-prediction on x is at most δ.

Proof. First, note that a 0-prediction strategy (as defined in Section 2) can be regarded as a bit-
prediction strategy that only ever predicts a 0. Let ε = γ := δ/4. The bit-prediction strategy P,
given access to some sequence b, simulates the 0-prediction strategy Sε,γ from Theorem 2 on b, and
simultaneously simulates an independent copy of Sε,γ on ¬b. If Sε,γ(b) ever outputs a prediction
(i.e., that the next bit of b will be 0), P immediately outputs the same prediction. On the other
hand, if Sε,γ(¬b) ever outputs a prediction (that the next bit of ¬b will be 0), then P predicts
that the next bit of b will be 1. If both simulations output predictions simultaneously, P makes an
arbitrary prediction for the next bit.

To analyze P, say we are given input sequence b ∈ Aws ∪Aco−ws. First suppose b ∈ Aws. Then
Sε,γ(b) outputs a correct prediction with probability > 1 − ε − γ. Also, by the safety property of
Sε,γ shown in Theorem 2, the probability that Sε,γ(¬b) outputs an incorrect prediction about ¬b
is at most ε + γ. Thus the probability that P outputs a correct prediction on b is greater than
1− 2ε− 2γ = 1− δ.

The case where b ∈ Aco−ws is analyzed similarly. Finally, the safety property of P follows from
the safety property of Sε,γ .

For the next lemma, we need some further definitions. Fix a finite automaton M = (Q, s,∆).
For x ∈ {0, 1}ω, let

Qinf(x) := {q ∈ Q : |Vq(x)| =∞}.

Of course, Qinf(x) is nonempty since Q is finite. If q ∈ Qinf(x), define a sequence x(q) ∈ {0, 1}ω as
follows. If Vq(x) = {t(1), t(2), . . . , } where 0 ≤ t(1) < t(2) < . . ., we define

x
(q)
i := xt(i)+1.

In words: if M is run on x, the i-th bit of x(q) records the bit of x seen immediately after the i-th

visit to state q. If q /∈ Qinf(x), we define x(q) ∈ {0, 1}∗ similarly; in this case, x
(q)
i is undefined if M

visits state q fewer than i times while running on x.
The following lemma gives us a useful property obeyed by sequences x from the set AB,ws

(defined in the statement of Theorem 3).

Lemma 3. Given M = (Q, s,∆), suppose B ⊆ Q is strongly accessible. If x ∈ AB,ws, then there
exists a state q ∈ Qinf(x) such that

x(q) ∈ Aws ∪Aco−ws.
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Proof. We prove the contrapositive. Assume that all q ∈ Qinf(x) satisfy x(q) /∈ Aws ∪ Aco−ws; we
will show that x /∈ AB,ws.

Say that a state q ∈ Q is frequent (on x) if there exist α, β > 0 such that for all T ∈ N,

|Vq(x) ∩ {0, 1, . . . , T − 1}| ≥ αT − β.

Let F denote the set of frequent states. Clearly F ⊆ Qinf(x). We will show:

1. F = Qinf(x);

2. F contains a state from B.

Item 2 will immediately imply that x /∈ AB,ws, as desired.
For each q ∈ Qinf(x), our assumption x(q) /∈ Aws ∪ Aco−ws implies that there is a δq ∈ (0, 1/2)

and a Kq > 0 such that for k ≥ Kq,

δq <
1

k

(
x
(q)
1 + . . .+ x

(q)
k

)
< 1− δq. (10)

Let δ := min δq. Choose a value T ? > 0 such that each q ∈ Qinf(x) appears at least Kq times among
(q0(x), q1(x), . . . , qT ?−1(x)). Choose a second value R > 0, such that any q /∈ Qinf(x) occurs fewer
than R times in the infinite sequence (q0(x), q1(x), . . .).

Let ` = |Q|. Fix any t ∈ N satisfying

t ≥ max

{
`R

δ2(`−1)
, T ?

}
.

By simple counting, some q? ∈ Q occurs at least t/` times in (q0(x), q1(x), . . . , qt−1(x)). We
have t/` > R, so this q? must lie in Qinf(x). Eq. (10) then implies that the states ∆(q?, 0),∆(q?, 1)
each appear at least δt/` − 1 > δ2t/` times among (q0(x), q1(x), . . . , qt−1(x)). Now δ2t/` > R, so
we have ∆(q?, 0),∆(q?, 1) ∈ Qinf(x).

Iterating this argument (` − 1) times, we conclude that every state q reachable from q? by a
sequence of (`− 1) or fewer transitions lies in Qinf(x), and appears at least δ2(`−1)t/` = Ω(t) times
among (q0(x), q1(x), . . . , qt−1(x)). But every q ∈ Qinf(x) is reachable from q? by at most (` − 1)
transitions. Thus F = Qinf(x), proving Item 1 above.

The argument above shows that if q ∈ Qinf(x), then ∆(q, 0),∆(q, 1) ∈ Qinf(x) as well. Recall
that B is strongly accessible; it follows that Qinf(x) ∩ B is nonempty, proving Item 2 above. This
completes the proof of Lemma 3.

We can now complete the proof of Theorem 3. Let Q = {p1, . . . , p`}, where ` = |Q|. We must
have ` > 1, since B is a nonempty proper subset of Q. Given ε > 0, let δ := ε/(2`). We define the
algorithm S = Sε as follows. S runs in parallel ` different simulations

P[1], . . . ,P[`]

of the algorithm Pδ from Lemma 2. P[j] is run, not on the input sequence x itself, but on the
subsequence x(pj). To determine which simulation receives each successive bit of x, the algorithm
S simply simulates M on the bits of x seen so far. (Note that, if pj /∈ Qinf(x), then the simulation
P[j] may “stall” indefinitely without receiving any further input bits.)
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Suppose that the simulation P[j] outputs a prediction z ∈ {0, 1} after seeing the i-th bit of
x(pj), and that we subsequently reach a time t such that qt(x) = pj is the (i + 1)-st visit to state

pj . The algorithm S then predicts that xt+1 = x
(pj)
i+1 = z.

We now analyze S. Fix any x ∈ AB−ws. By the safety property of Lemma 2, each P[j] outputs
an incorrect prediction with probability at most δ on any input sequence, so the overall probability
that S makes an incorrect prediction on any input sequence is at most `δ = ε/2. This proves the
safety property claimed for S.

Now, on input sequences x ∈ AB,ws, Lemma 3 tells us that there exists a pj ∈ Qinf(x) such that
x(pj) ∈ Aws ∪ Aco−ws. Thus, if P[j] is run individually on x(pj), P[j] outputs a correct prediction
with probability greater than 1− δ. We conclude that

Sucbit-pred (S, x) > (1− δ)− ε/2 > 1− ε,

using ` > 1. This establishes Eq. (9), and completes the proof of Theorem 3.

4.5 Single-bit prediction strategies as gambling schemes

As mentioned in the Introduction, it is possible to interpret randomized bit-prediction strategies,
as formalized in Section 4.1, as a certain kind of (deterministic) gambling schemes making repeated
predictions, without reinvestment of winnings. Here we discuss this simple connection.

Our gambling takes place in a casino with two kinds of money: blue money, which can be used
to gamble but is valueless outside the casino; and red money, which is of value outside the casino
but cannot be used to gamble (or converted into blue money). A bit-prediction strategy, described
by a family

S = {πS,b : b ∈ {0, 1}ω},

can be viewed as a gambler who holds an initial fortune consisting of blue money. On input
sequence b = (b1, b2, . . .), this gambler places a “stake” of blue money of size πS,b((i, z)) ∈ [0, 1]
on the prediction [bi = z] after viewing b1, . . . , bi−1 and before viewing bi. (Thus, the gambler
may place a stake simultaneously on [bi = 0] and on [bi = 1]. 0-prediction strategies correspond
to gambling schemes where a stake is only ever placed on [bi = 0].) A successful prediction is
rewarded with an amount of red money equal to the amount of blue money staked; an unsuccessful
prediction gets no such reward. In either case, the blue money staked is taken by the casino.

From this viewpoint, the condition we imposed that πS,b((i, z)) depends only on b1, . . . , bi−1
still naturally expresses the gambler’s lack of prescience about future bits. The requirement that∑

i∈N,z∈{0,1} πS,b((i, z)) ≤ 1 is now interpreted as the condition that the gambler has a total initial

stake of $1 worth of blue money to invest. The quantity Sucbit-pred(S, b) =
∑

i∈N πS,b((i, bi))
we defined can, in this setting, be seen to equal the total amount of red money earned by the
gambler over the entire sequence; this is the quantity our gambler would like to maximize. By this
connection, for any set A ⊆ {0, 1}ω, the value Sucbit-pred(S, A) equals the infimum over b ∈ A of
the amount of red money earned by the gambler on b.

Gambling schemes with variable stakes, determined adaptively by the gambler, have been in-
tensively studied. The gambling schemes called gales, discussed in the introduction, correspond
to such schemes in which reinvestment of winnings is allowed. Other works, e.g., [KP11], study a
gambling setting in which the gambler may adaptively choose a stake in the bounded range [0, 1] at
each step; in that work’s setting, unlike with gales and our own setting, the gambler is allowed to
go into debt. In [KP11] and related work, a main focus is to minimize a measure of the gambler’s
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regret with respect to a class of “expert” prediction strategies, over all bit-sequences. This goal is
somewhat orthogonal to our goals in the present work.

5 The Density Prediction Game

In this section we prove Theorem 1 from Section 1.3.
For any fixed δ, ε, our prediction strategy will work entirely within a finite interval (x1, . . . , xT )

of the sequence x. We note that, to derive a (δ, ε)-successful strategy over this interval, it suffices to
show that for every distribution D over {0, 1}T , there exists a strategy SD that is (δ, ε)-successful
when played against D. (This observation follows from the minimax theorem of game theory, or
from the result of Sandroni [San03] mentioned in Section 1.1.) However, using this idea would lead
to a nonconstructive proof of Theorem 1, and in any case does not seem to make the proof any
simpler. Thus we will not follow this approach.

Let δ, ε > 0 be given; we give a forecasting strategy S = Sδ,ε for the density prediction game,
and prove that S is (δ, ε)-successful. Set n := d4/(δε2)e. Our strategy will always make a prediction
about an interval xa, . . . , xb where a ≤ b ≤ 2n. The strategy S is defined as follows:

1. Choose R ∈ {1, . . . , n} uniformly. Choose S uniformly from {1, . . . , 2n−R}.

2. Ignore the first t = (S − 1) · 2R bits of x. Observe bits xt+1, . . . , xt+2R−1 , and let p be the
fraction of 1s in this interval. Immediately after seeing xt+2R−1 , predict:

“Out of the next 2R−1 bits, a p fraction will be 1s.”

We now analyze S. To do so, it is helpful to describe S in a slightly different fashion. Let us
re-index the first 2n bits of our sequence x, considering each such bit to be indexed by a string
z ∈ {0, 1}n. We use lexicographic order, so that the sequence is indexed x0n , x0n−11, x0n−210, and
so on.

Let T be a directed binary tree of height n, whose vertices at depth i (0 ≤ i ≤ n) are indexed
by binary strings of length i; in particular, the root vertex is labeled by the empty string. If i < n
and y ∈ {0, 1}i, the vertex vy has left and right children vy0, vy1 respectively. Each leaf vertex is
indexed by an n-bit string z, and any such vertex vz is labeled with the bit xz.

For y ∈ {0, 1}∗, let Ty denote the subtree of T rooted at vy. A direct translation of the strategy
S into our current perspective gives the following equivalent description of S:

1’. Choose R ∈ {1, . . . , n} uniformly. Starting at the root of T , take a directed, unbiased random
walk of length n−R, reaching a vertex vY where Y ∈ {0, 1}n−R.

2’. Observe the bits of x that label leaf vertices in TY 0, and let p be the fraction of 1s seen among
these bits. Immediately after seeing the last of these bits, predict:

“Out of the next 2R−1 bits of x (i.e., those labeling leaf vertices in TY 1), a p fraction will be 1s.”

To analyze S in this form, fix any binary sequence x. We consider the random walk performed
in S to be extended to an unbiased random walk of length n. The walk terminates at some leaf
vertex vZ , where Z = (z1, . . . , zn) is uniform over {0, 1}n.
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For i ∈ [n] and y ∈ {0, 1}i, define

ρ(y) := 2i−n
∑

w∈{0,1}n−i

xyw

as the fraction of 1s among the labels of leaf vertices of Ty. We let ρ(∅) := 2−n
∑

w∈{0,1}n xw. Let
X(0) := ρ(∅), and for t ∈ [n], define the random variable

X(t) := ρ(z1, . . . , zt),

defined in terms of Z. The sequence X(0), . . . , X(n) is a martingale; that is, for each t ∈ [n] we
have the identity E[X(t)|X(0), . . . , X(t − 1)] = X(t − 1), which is easily verified. We follow a
folklore technique by analyzing the squared differences between terms in the sequence. First, we
have X(t) ∈ [0, 1], so that (X(n)−X(0))2 ≤ 1. On the other hand,

E[(X(n)−X(0))2] = E

 ∑
0≤t<n

(X(t+ 1)−X(t))

2
= E

 ∑
0≤t<n

(X(t+ 1)−X(t))2

+ E

2
∑

0≤s<t<n
(X(s+ 1)−X(s))(X(t+ 1)−X(t))

 .
(11)

Now, for 0 ≤ s < t < n and for any outcome of the bits z1, . . . , zt (which determine X(s), X(s+ 1),
and X(t)), we have

E[(X(t+ 1)−X(t))|z1, . . . , zt] = Ezt+1∈{0,1}[(ρ(z1, . . . , zt+1)]− ρ(z1, . . . , zt)

=
1

2
[ρ(z1, . . . , zt, 0) + ρ(z1, . . . , zt, 1)]− ρ(z1, . . . , zt)

= 0.

Thus the second right-hand term in Eq. (11) is 0, and

E[(X(n)−X(0))2] =
∑

0≤t<n
E
[
(X(t+ 1)−X(t))2

]
. (12)

Next we relate this to the accuracy of our guess p. Let p∗ be the fraction of 1s in TY 1, i.e., the
quantity S attempts to predict; note that p∗ and p are both random variables. From the definitions,
we have

p = ρ(Y 0), p∗ = ρ(Y 1), X(n−R) =
1

2
(p+ p∗) .

Also,

X(n−R+ 1) =

{
p if zn−R+1 = 0,
p∗ if zn−R+1 = 1.

Thus we have the identity

(X(n−R+ 1)−X(n−R))2 =
1

4
(p− p∗)2 .
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Now, n−R is is uniform over {0, 1, . . . , n− 1}, and independent of Z. It follows from Eq. (12) that

E[(X(n−R+ 1)−X(n−R))2] =
1

n
E[(X(n)−X(0))2] ≤ 1/n.

Combining, we have
E[(p− p∗)2] ≤ 4/n. (13)

On the other hand,
E[(p− p∗)2] ≥ Pr[|p− p∗| ≥ ε] · ε2. (14)

Combining Eqs. (13) and (14), we obtain

Pr[|p− p∗| ≥ ε] ≤ 4/(nε2) ≤ δ,

by our setting n = d4/(δε2)e. This proves Theorem 1.

6 Questions for Future Work

1. Fix some p ∈ [1/2, 1]; is there a satisfying characterization of the sets A ⊆ {0, 1}ω for
which some bit-prediction strategy (as defined in Section 4.1) succeeds with probability ≥ p
against all x ∈ A? Perhaps there is a characterization in terms of some appropriate notion
of dimension, analogous to the gale characterizations of Hausdorff dimension [Lut03a] and
packing dimension [AHLM07].

2. Could the study of computationally bounded bit-prediction strategies be of value to the study
of complexity classes, by analogy to the study of computationally bounded gales in [Lut03a,
AHLM07] and in related work?

3. Find necessary and sufficient conditions on the set B of “infrequently visited” states, for the
conclusion of Theorem 3 (in Section 4.3) to hold.
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