2,462 research outputs found

    Landscape and flux for quantifying global stability and dynamics of game theory

    Full text link
    Game theory has been widely applied to many areas including economics, biology and social sciences. However, it is still challenging to quantify the global stability and global dynamics of the game theory. We developed a landscape and flux framework to quantify the global stability and global dynamics of the game theory. As an example, we investigated the models of three-strategy games: a special replicator-mutator game, the repeated prison dilemma model. In this model, one stable state, two stable states and limit cycle can emerge under different parameters. The repeated Prisoner's Dilemma system has Hopf bifurcation transitions from one stable state to limit cycle state, and then to another one stable state or two stable states, or vice versa. We explored the global stability of the repeated Prisoner's Dilemma system and the kinetic paths between the basins of attractor. The paths are irreversible due to the non-zero flux. One can explain the game for PeacePeace and WarWar.Comment: 25 pages, 15 figure

    Controlling chaos in the quantum regime using adaptive measurements

    Get PDF
    The continuous monitoring of a quantum system strongly influences the emergence of chaotic dynamics near the transition from the quantum regime to the classical regime. Here we present a feedback control scheme that uses adaptive measurement techniques to control the degree of chaos in the driven-damped quantum Duffing oscillator. This control relies purely on the measurement backaction on the system, making it a uniquely quantum control, and is only possible due to the sensitivity of chaos to measurement. We quantify the effectiveness of our control by numerically computing the quantum Lyapunov exponent over a wide range of parameters. We demonstrate that adaptive measurement techniques can control the onset of chaos in the system, pushing the quantum-classical boundary further into the quantum regime

    Control Barrier Function Based Quadratic Programs for Safety Critical Systems

    Get PDF
    Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions -- expressed as control barrier functions -- to be unified with performance objectives -- expressed as control Lyapunov functions -- in the context of real-time optimization-based controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds
    • …
    corecore