86,784 research outputs found

    High-Rate Space Coding for Reconfigurable 2x2 Millimeter-Wave MIMO Systems

    Full text link
    Millimeter-wave links are of a line-of-sight nature. Hence, multiple-input multiple-output (MIMO) systems operating in the millimeter-wave band may not achieve full spatial diversity or multiplexing. In this paper, we utilize reconfigurable antennas and the high antenna directivity in the millimeter-wave band to propose a rate-two space coding design for 2x2 MIMO systems. The proposed scheme can be decoded with a low complexity maximum-likelihood detector at the receiver and yet it can enhance the bit-error-rate performance of millimeter-wave systems compared to traditional spatial multiplexing schemes, such as the Vertical Bell Laboratories Layered Space-Time Architecture (VBLAST). Using numerical simulations, we demonstrate the efficiency of the proposed code and show its superiority compared to existing rate-two space-time block codes

    On the ergodic sum-rate performance of CDD in multi-user systems

    Full text link
    The main focus of space-time coding design and analysis for MIMO systems has been so far focused on single-user systems. For single-user systems, transmit diversity schemes suffer a loss in spectral efficiency if the receiver is equipped with more than one antenna, making them unsuitable for high rate transmission. One such transmit diversity scheme is the cyclic delay diversity code (CDD). The advantage of CDD over other diversity schemes such as orthogonal space-time block codes (OSTBC) is that a code rate of one and delay optimality are achieved independent of the number of transmit antennas. In this work we analyze the ergodic rate of a multi-user multiple access channel (MAC) with each user applying such a cyclic delay diversity (CDD) code. We derive closed form expressions for the ergodic sum-rate of multi-user CDD and compare it with the sum-capacity. We study the ergodic rate region and show that in contrast to what is conventionally known regarding the single-user case, transmit diversity schemes are viable candidates for high rate transmission in multi-user systems. Finally, our theoretical findings are illustrated by numerical simulation results.Comment: to appear in Proceedings of 2007 IEEE Information Theory Workshop (ITW) in Lake Taho

    Transmission and detection for space-time block coding and v-blast systems

    Get PDF
    This dissertation focuses on topics of data transmission and detection of space -time block codes (STBC). The STBCs can be divided into two main categories, namely, the orthogonal space-time block codes (OSTBC) and the quasi-orthogonal space-time codes (Q-OSTBC). The space-time block coded systems from transceiver design perspective for both narrow-band and frequency selective wireless environment are studied. The dissertation also processes and studies a fast iterative detection scheme for a high-rate space-time transmission system, the V-BLAST system. In Chapter 2, a new OSTBC scheme with full-rate and full-diversity, which can be used on QPSK transceiver systems with four transmit antennas and any number of receivers is studied. The newly proposed coding scheme is a non-linear coding. Compared with full-diversity QOSTBC, an obvious advantage of our proposed new OSTBC is that the coded signals transmitted through all four transmit antennas do not experience any constellation expansion. In Chapter 3, a new fast coherent detection algorithm is proposed to provide maximum likelihood (ML) detection for Q-OSTBC. The new detection scheme is also very useful to analysis the diversity property of Q-OSTBC and design full diversity Q-OSTBC codes. The complexity of the new proposed detection algorithm can be independent to the modulation order and is especially suitable for high data rate transmission. In Chapter 4, the space-time coding schemes in frequency selective channels are studied. Q-OSTC transmission and detection schemes are firstly extended for frequency selective wireless environment. A new block based quasi-orthogonal space-time block encoding and decoding (Q-OSTBC) scheme for a wireless system with four transmit antennas is proposed in frequency selective fading channels. The proposed MLSE detection scheme effectively combats channel dispersion and frequency selectivity due to multipath, yet still provides full diversity gain. However, since the computational complexity of MLSE detection increases exponentially with the maximum delay of the frequency selective channel, a fast sub-optimal detection scheme using MMSE equalizer is also proposed, especially for channels with large delays. The Chapter 5 focuses on the V-BLAST system, an important high-rate space-time data transmission scheme. A reduced complexity ML detection scheme for VBLAST systems, which uses a pre-decoder guided local exhaustive search is proposed and studied. A polygon searching algorithm and an ordered successive interference cancellation (O-SIC) sphere searching algorithm are major components of the proposed multi-step ML detectors. At reasonable high SNRs, our algorithms have low complexity comparable to that of O-SIC algorithm, while they provide significant performance improvement. Another new low complexity algorithm termed ordered group-wise interference cancellation (O-GIC) is also proposed for the detection of high dimensional V-BLAST systems. The O-GIC based detection scheme is a sub-optimal detection scheme, however, it outperforms the O-SIC

    High-Rate and Low-Complexity Space-Time Block Codes for 2x2 MIMO Systems

    Get PDF
    The main design criteria for space-time block codes (STBCs) are the code rate, diversity order, coding gain, and low decoder complexity. In this letter, we propose a full-rate full-diversity STBC for 2 Ă— 2 multiple-input multiple-output (MIMO) systems with a substantially lower maximum likelihood (ML) detection complexity than that of existing schemes. This makes the implementation of high-performance full-rate codes feasible for practical systems. Our numerical evaluation shows that the proposed code achieves significantly lower decoding complexity while maintaining a similar performance compared to that of existing rate-2 STBCs

    High-rate codes that are linear in space and time

    Get PDF
    Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits per second per hertz, Vertical Bell Labs Layered Space-Time (V-BLAST), where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas-this deficiency is especially important for modern cellular systems, where a base station typically has more antennas than the mobile handsets. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any configuration of transmit and receive antennas and that subsumes both V-BLAST and many proposed space-time block codes as special cases. The scheme transmits substreams of data in linear combinations over space and time. The codes are designed to optimize the mutual information between the transmitted and received signals. Because of their linear structure, the codes retain the decoding simplicity of V-BLAST, and because of their information-theoretic optimality, they possess many coding advantages. We give examples of the codes and show that their performance is generally superior to earlier proposed methods over a wide range of rates and signal-to-noise ratios (SNRs)

    Super-orthogonal space-time turbo coded OFDM systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.The ever increasing demand for fast and efficient broadband wireless communication services requires future broadband communication systems to provide a high data rate, robust performance and low complexity within the limited available electromagnetic spectrum. One of the identified, most-promising techniques to support high performance and high data rate communication for future wireless broadband services is the deployment of multi-input multi-output (MIMO) antenna systems with orthogonal frequency division multiplexing (OFDM). The combination of MIMO and OFDM techniques guarantees a much more reliable and robust transmission over a hostile wireless channel through coding over the space, time and frequency domains. In this thesis, two full-rate space-time coded OFDM systems are proposed. The first one, designed for two transmit antennas, is called extended super-orthogonal space-time trellis coded OFDM (ESOSTTC-OFDM), and is based on constellation rotation. The second one, called super-quasi-orthogonal space-time trellis coded OFDM (SQOSTTCOFDM), combines a quasi-orthogonal space-time block code with a trellis code to provide a full-rate code for four transmit antennas. The designed space-time coded MIMO-OFDM systems achieve a high diversity order with high coding gain by exploiting the diversity advantage of frequency-selective fading channels. Concatenated codes have been shown to be an effective technique of achieving reliable communication close to the Shannon limit, provided that there is sufficient available diversity. In a bid to improve the performance of the super orthogonal space-time trellis code (SOSTTC) in frequency selective fading channels, five distinct concatenated codes are proposed for MIMO-OFDM over frequency-selective fading channels in the second part of this thesis. Four of the coding schemes are based on the concatenation of convolutional coding, interleaving, and space-time coding, along multiple-transmitter diversity systems, while the fifth coding scheme is based on the concatenation of two space-time codes and interleaving. The proposed concatenated Super-Orthogonal Space-Time Turbo-Coded OFDM System I. B. Oluwafemi 2012 vii coding schemes in MIMO-OFDM systems achieve high diversity gain by exploiting available diversity resources of frequency-selective fading channels and achieve a high coding gain through concatenations by employing the turbo principle. Using computer software simulations, the performance of the concatenated SOSTTC-OFDM schemes is compared with those of concatenated space-time trellis codes and those of conventional SOSTTC-OFDM schemes in frequency-selective fading channels. Simulation results show that the concatenated SOSTTC-OFDM system outperformed the concatenated space-time trellis codes and the conventional SOSTTC-OFDM system under the various channel scenarios in terms of both diversity order and coding gain

    Linear dispersion codes

    Get PDF
    Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, V-BLAST, where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously-proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any configuration of transmit and receive antennas and that subsumes both V-BLAST and many proposed space-time block codes as special cases. The scheme transmits substreams of data in linear combinations over space and time. The codes are designed to optimize the mutual information between the transmitted and received signals. Because of their linear structure, the codes retain the decoding simplicity of V-BLAST, and because of their information theoretic optimality, they possess many coding advantages. We give examples of the codes and show that their performance is generally superior to earlier proposed methods over a wide range of rates and SNRs
    • …
    corecore