4 research outputs found

    High-rate groupwise STBC using low-complexity SIC based receiver

    Get PDF
    In this paper, using diagonal signal repetition with Alamouti code employed as building blocks, we propose a high- rate groupwise space-time block code (GSTBC) which can be effectively decoded by a low-complexity successive interference cancellation (SIC) based receiver. The proposed GSTBC and SIC based receiver are jointly designed such that the diversity repetition in a GSTBC can induce the dimension expansion to suppress interfering signals as well as to obtain diversity gain. Our proposed scheme can be easily applied to the case of large number of antennas while keeping a reasonably low complexity at the receiver. It is found that the required minimum number of receive antennas is only two for the SIC based receiver to avoid the error floor in performance. The simulation results show that the proposed GSTBC with SIC based receiver obtains a near maximum likelihood (ML) performance while having a significant performance gain over other codes equipped with linear decoders

    High-rate groupwise STBC using low-complexity SIC based receiver

    Get PDF
    In this paper, using diagonal signal repetition with Alamouti code employed as building blocks, we propose a high- rate groupwise space-time block code (GSTBC) which can be effectively decoded by a low-complexity successive interference cancellation (SIC) based receiver. The proposed GSTBC and SIC based receiver are jointly designed such that the diversity repetition in a GSTBC can induce the dimension expansion to suppress interfering signals as well as to obtain diversity gain. Our proposed scheme can be easily applied to the case of large number of antennas while keeping a reasonably low complexity at the receiver. It is found that the required minimum number of receive antennas is only two for the SIC based receiver to avoid the error floor in performance. The simulation results show that the proposed GSTBC with SIC based receiver obtains a near maximum likelihood (ML) performance while having a significant performance gain over other codes equipped with linear decoders

    Cooperative diversity techniques for high-throughput wireless relay networks

    Get PDF
    Relay communications has attracted a growing interest in wireless communications with application to various enhanced technologies. This thesis considers a number of issues related to data throughput in various wireless relay network models. Particularly, new implementations of network coding (NC) and space-time coding (STC) techniques are investigated to offer various means of achieving high-throughput relay communications. Firstly, this thesis investigates different practical automatic repeat request (ARQ) retransmission protocols based on NC for two-way wireless relay networks to improve throughput efficiency. Two improved NC-based ARQ schemes are designed based on go-back-N and selective-repeat (SR) protocols. Addressing ARQ issues in multisource multidestination relay networks, a new NC-based ARQ protocol is proposed and two packet-combination algorithms are developed for retransmissions at relay and sources to significantly improve the throughput. In relation to the concept of channel quality indicator (CQI) reporting in two-way relay networks, two new efficient CQI reporting schemes are designed based on NC to improve the system throughput by allowing two terminals to simultaneously estimate the CQI of the distant terminal-relay link without incurring additional overhead. The transmission time for CQI feedback at the relays is reduced by half while the increase in complexity and the loss of performance are shown to be negligible. Furthermore, a low-complexity relay selection scheme is suggested to reduce the relay searching complexity. For the acknowledgment (ACK) process, this thesis proposes a new block ACK scheme based on NC to significantly reduce the ACK overheads and therefore produce an enhanced throughput. The proposed scheme is also shown to improve the reliability of block ACK transmission and reduce the number of data retransmissions for a higher system throughput. Additionally, this thesis presents a new cooperative retransmission scheme based on relay cooperation and NC to considerably reduce the number of retransmission packets and im- prove the reliability of retransmissions for a more power efficient and higher throughput system with non-overlapped retransmissions. Moreover, two relay selection schemes are recommended to determine the optimised number of relays for the retransmission. Finally, with respect to cognitive wireless relay networks (CWRNs), this thesis proposes a new cooperative spectrum sensing (CSS) scheme to improve the spectrum sensing performance and design a new CSS scheme based on NC for three-hop CWRNs to improve system throughput. Furthermore, a new distributed space-time-frequency block code (DSTFBC) is designed for a two- hop nonregenerative CWRN over frequency-selective fading channels. The proposed DSTFBC design achieves higher data rate, spatial diversity gain, and decoupling detection of data blocks at all destination nodes with a low-complexity receiver structure
    corecore