310 research outputs found

    Wavelet-Fourier CORSING techniques for multi-dimensional advection-diffusion-reaction equations

    Get PDF
    We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compressed sensing approach, the proposed method is able to approximate the largest coefficients of the solution with respect to a biorthogonal wavelet basis. Namely, we assemble a compressed discretization based on randomized subsampling of the Fourier test space and we employ sparse recovery techniques to approximate the solution to the PDE. In this paper, we provide the first rigorous recovery error bounds and effective recipes for the implementation of the CORSING technique in the multi-dimensional setting. Our theoretical analysis relies on new estimates for the local a-coherence, which measures interferences between wavelet and Fourier basis functions with respect to the metric induced by the PDE operator. The stability and robustness of the proposed scheme is shown by numerical illustrations in the one-, two-, and three-dimensional case

    Optimal Sup-norm Rates and Uniform Inference on Nonlinear Functionals of Nonparametric IV Regression

    Full text link
    This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function h0h_0 and its functionals. First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series 2SLS) estimators of h0h_0 and its derivatives. Second, we derive a lower bound that describes the best possible (minimax) sup-norm rates of estimating h0h_0 and its derivatives, and show that the sieve NPIV estimator can attain the minimax rates when h0h_0 is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal root-mean-squared rates for severely ill-posed problems, and are only a logarithmic factor slower than the optimal root-mean-squared rates for mildly ill-posed problems. Third, we use our sup-norm rates to establish the uniform Gaussian process strong approximations and the score bootstrap uniform confidence bands (UCBs) for collections of nonlinear functionals of h0h_0 under primitive conditions, allowing for mildly and severely ill-posed problems. Fourth, as applications, we obtain the first asymptotic pointwise and uniform inference results for plug-in sieve t-statistics of exact consumer surplus (CS) and deadweight loss (DL) welfare functionals under low-level conditions when demand is estimated via sieve NPIV. Empiricists could read our real data application of UCBs for exact CS and DL functionals of gasoline demand that reveals interesting patterns and is applicable to other markets.Comment: This paper is a major extension of Sections 2 and 3 of our Cowles Foundation Discussion Paper CFDP1923, Cemmap Working Paper CWP56/13 and arXiv preprint arXiv:1311.0412 [math.ST]. Section 3 of the previous version of this paper (dealing with data-driven choice of sieve dimension) is currently being revised as a separate pape

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh

    3D Steerable Wavelets in Practice

    Full text link

    Query of image content using Wavelets and Gibbs-Markov Random Fields

    Get PDF
    The central theme of this thesis is the application of Wavelets and Random Processes to content-based image query (on texture patterns, in particular). Given a query image, a content-based search extracts a certain representative measure (or signature) from the query image and likewise for all the target images in the search archive. A good representative measure is one that provides us with the ability to differentiate easily between different patterns. A distance measure is computed between the query properties and the properties of each of the target images. The lowest distance measure gives us the best target match for the particular query. Typically, the measure extraction on the target archive is performed as a pre-processing step. The thesis features two different methods of measure extraction. The first one is a wavelet based measure extraction method. It builds upon a previously documented method, but adds subtle modifications to it so that it now lends much much more effectiveness to pattern matching on texture patterns and on images of unequal sizes. The modified algorithm as well as the mathematics behind it is presented. The second method uses a Markov Random Field to model the texture properties of regions within an image. The parameters of the model serve as the texture measure or signature. Wavelet-based multiresolution is then used to speed up the search. The theory of Markov Random Fields, their equivalence with Gibbs Random Fields, the Hammerseley-Clifford theorem and parameter estimation techniques are presented. In addition to pattern matching these texture signatures have also be used for controlled image smoothing and texture generation. The results from both methods are encouraging. One hopes that these methods find widespread use in image query applications
    • …
    corecore