12 research outputs found

    Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification

    Get PDF
    Automatic feature extraction and classification are two main tasks in abnormal ECG beat recognition. Feature extraction is an important prerequisite prior to classification since it provides the classifier with input features, and the performance of classifier depends significantly on the quality of these features. This study develops an effective method to extract low-dimensional ECG beat feature vectors. It employs wavelet multi-resolution analysis to extract time-frequency domain features and then applies principle component analysis to reduce the dimension of the feature vector. In classification, 12-element feature vectors characterizing six types of beats are used as inputs for one-versus-one support vector machine, which is conducted in form of 10-fold cross validation with beat-based and record-based training schemes. Tested upon a total of 107049 beats from MIT-BIH arrhythmia database, our method has achieved average sensitivity, specificity and accuracy of 99.09%, 99.82% and 99.70%, respectively, using the beat-based training scheme, and 44.40%, 88.88% and 81.47%, respectively, using the record-based training scheme

    Exploring ECG Signal Analysis Techniques for Arrhythmia Detection: A Review

    Get PDF
    The heart holds paramount importance in the human body as it serves the crucial function of supplying blood and nutrients to various organs. Thus, maintaining its health is imperative. Arrhythmia, a heart disorder, arises when the heart's rhythm becomes irregular. Electrocardiogram (ECG) signals are commonly utilized for analyzing arrhythmia due to their simplicity and cost-effectiveness. The peaks observed in ECG graphs, particularly the R peak, are indicative of heart conditions, facilitating arrhythmia diagnosis. Arrhythmia is broadly categorized into Tachycardia and Bradycardia for identification purposes. This paper explores diverse techniques such as Deep Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), Support Vector Machines (SVM), Neural Network (NN) classifiers, as well as Wavelet and Time–Frequency Transform (TQWT), which have been employed over the past decade for arrhythmia detection using various datasets. The study delves into the analysis of arrhythmia classification on ECG datasets, highlighting the effectiveness of data preprocessing, feature extraction, and classification techniques in achieving superior performance in classifying ECG signals for arrhythmia detection

    Three-Heartbeat Multilead ECG Recognition Method for Arrhythmia Classification

    Get PDF
    Electrocardiogram (ECG) is the primary basis for the diagnosis of cardiovascular diseases. However, the amount of ECG data of patients makes manual interpretation time-consuming and onerous. Therefore, the intelligent ECG recognition technology is an important means to decrease the shortage of medical resources. This study proposes a novel classification method for arrhythmia that uses for the very first time a three-heartbeat multi-lead (THML) ECG data in which each fragment contains three complete heartbeat processes of multiple ECG leads. The THML ECG data pre-processing method is formulated which makes use of the MIT-BIH arrhythmia database as training samples. Four arrhythmia classification models are constructed based on one-dimensional convolutional neural network (1D-CNN) combined with a priority model integrated voting method to optimize the integrated classification effect. The experiments followed the recommended inter-patient scheme of the Association for the Advancement of Medical Instrumentation (AAMI) recommendations, and the practicability and effectiveness of THML ECG data are proved with ablation experiments. Results show that the average accuracy of the N, V, S, F, and Q classes is 94.82%, 98.10%, 97.28%, 98.70%, and 99.97%, respectively, with the positive predictive value of the N, V, S, and F classes being 97.0%, 90.5%, 71.9%, and 80.4%, respectively. Compared with current studies, the THML ECG data can effectively improve the morphological integrity and time continuity of ECG information and the 1D-CNN model of ECG sequence has a higher accuracy for arrhythmia classification. The proposed method alleviates the problem of insufficient samples, meets the needs of medical ECG interpretation and contributes to the intelligent dynamic research of cardiac disease

    Disease diagnosis in smart healthcare: Innovation, technologies and applications

    Get PDF
    To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer’s disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed

    Towards a better understanding of the precordial leads : an engineering point of view

    Get PDF
    This thesis provides comprehensive literature review of the electrocardiography evolution to highlight the important theories behind the development of the electrocardiography device. More importantly, it discusses different electrode placement on the chest, and their clinical advantages. This work presents a technical detail of a new ECG device which was developed at MARCS institute and can record the Wilson Central Terminal (WCT) components in addition to the standard 12-lead ECG. This ECG device was used to record from 147 patients at Campbelltown hospital over three years. The first two years of recording contain 92 patients which was published in the Physionet platform under the name of Wilson Central Terminal ECG database (WCTECGdb). This novel dataset was used to demonstrate the WCT signal characterisation and investigate how WCT impacts the precordial leads. Furthermore, the clinical influence of the WCT on precordial leads in patients diagnosed with non-ST segment elevation myocardial infarction (NSTEMI) is discussed. The work presented in this research is intended to revisit some of the ECG theories and investigate the validity of them using the recorded data. Furthermore, the influence of the left leg potential on recording the precordial leads is presented, which lead to investigate whether the WCT and augmented vector foot (aVF) are proportional. Finally, a machine learning approach is proposed to minimise the Wilson Central Terminal
    corecore