11,897 research outputs found

    High-performance combination of low resolution tactile images using a bit-based representation

    Get PDF

    Human factors in space telepresence

    Get PDF
    The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing

    A robust braille recognition system

    Get PDF
    Braille is the most effective means of written communication between visually-impaired and sighted people. This paper describes a new system that recognizes Braille characters in scanned Braille document pages. Unlike most other approaches, an inexpensive flatbed scanner is used and the system requires minimal interaction with the user. A unique feature of this system is the use of context at different levels (from the pre-processing of the image through to the post-processing of the recognition results) to enhance robustness and, consequently, recognition results. Braille dots composing characters are identified on both single and double-sided documents of average quality with over 99% accuracy, while Braille characters are also correctly recognised in over 99% of documents of average quality (in both single and double-sided documents)

    Sensitive Skin for Robotics

    Get PDF
    This thesis explores two novel ways of reducing the data complexity of tactile sensing. The thesis begins by examining the state-of-the art in tactile sensing, not only examining the sensor construction and interpretation of data but also the motivation for these designs. The thesis then proposes two methods for reducing the complexity of data in tactile sensing. The first is a low-power tactile sensing array exploiting a novel application of a pressure-sensitive material called quantum tunnelling composite. The properties of this material in this array form are shown to be beneficial in robotics. The electrical characteristics of the material are also explored. A bit-based structure for representing tactile data called Bitworld is then defined and its computational performance is characterised. It is shown that this bit-based structure outperforms floating-point arrays by orders of magnitude. This structure is then shown to allow high-resolution images to be produced by combining low resolution sensor arrays with equivalent functional performance to a floating-point array, but with the advantages of computational efficiency. Finally, an investigation into making Bitworld robust in the presence of positional noise is described with simulations to verify that such robustness can be achieved. Overall, the sensor and data structure described in this thesis allow simple, but effective tactile systems to be deployed in robotics without requiring a significant commitment of computational or power resources on the part of a robot designer.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Instructional eLearning technologies for the vision impaired

    Get PDF
    The principal sensory modality employed in learning is vision, and that not only increases the difficulty for vision impaired students from accessing existing educational media but also the new and mostly visiocentric learning materials being offered through on-line delivery mechanisms. Using as a reference Certified Cisco Network Associate (CCNA) and IT Essentials courses, a study has been made of tools that can access such on-line systems and transcribe the materials into a form suitable for vision impaired learning. Modalities employed included haptic, tactile, audio and descriptive text. How such a multi-modal approach can achieve equivalent success for the vision impaired is demonstrated. However, the study also shows the limits of the current understanding of human perception, especially with respect to comprehending two and three dimensional objects and spaces when there is no recourse to vision
    corecore