34 research outputs found

    High-Order Numerical Integration on Domains Bounded by Intersecting Level Sets

    Full text link
    We present a high-order method that provides numerical integration on volumes, surfaces, and lines defined implicitly by two smooth intersecting level sets. To approximate the integrals, the method maps quadrature rules defined on hypercubes to the curved domains of the integrals. This enables the numerical integration of a wide range of integrands since integration on hypercubes is a well known problem. The mappings are constructed by treating the isocontours of the level sets as graphs of height functions. Numerical experiments with smooth integrands indicate a high-order of convergence for transformed Gauss quadrature rules on domains defined by polynomial, rational, and trigonometric level sets. We show that the approach we have used can be combined readily with adaptive quadrature methods. Moreover, we apply the approach to numerically integrate on difficult geometries without requiring a low-order fallback method

    Generalized Gilat-Raubenheimer method for density-of-states calculation in photonic crystals

    Get PDF
    Efficient numeric algorithm is the key for accurate evaluation of density of states (DOS) in band theory. Gilat-Raubenheimer (GR) method proposed in 1966 is an efficient linear extrapolation method which was limited in specific lattices. Here, using an affine transformation, we provide a new generalization of the original GR method to any Bravais lattices and show that it is superior to the tetrahedron method and the adaptive Gaussian broadening method. Finally, we apply our generalized GR (GGR) method to compute DOS of various gyroid photonic crystals of topological degeneracies.Comment: 7 pages, 2 figures; typos added, appendix B added. Programs are available at: https://github.com/boyuanliuoptics/DOS-calculatio

    The diffuse Nitsche method: Dirichlet constraints on phase-field boundaries

    Get PDF
    We explore diffuse formulations of Nitsche's method for consistently imposing Dirichlet boundary conditions on phase-field approximations of sharp domains. Leveraging the properties of the phase-field gradient, we derive the variational formulation of the diffuse Nitsche method by transferring all integrals associated with the Dirichlet boundary from a geometrically sharp surface format in the standard Nitsche method to a geometrically diffuse volumetric format. We also derive conditions for the stability of the discrete system and formulate a diffuse local eigenvalue problem, from which the stabilization parameter can be estimated automatically in each element. We advertise metastable phase-field solutions of the Allen-Cahn problem for transferring complex imaging data into diffuse geometric models. In particular, we discuss the use of mixed meshes, that is, an adaptively refined mesh for the phase-field in the diffuse boundary region and a uniform mesh for the representation of the physics-based solution fields. We illustrate accuracy and convergence properties of the diffuse Nitsche method and demonstrate its advantages over diffuse penalty-type methods. In the context of imaging based analysis, we show that the diffuse Nitsche method achieves the same accuracy as the standard Nitsche method with sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human vertebral body

    Efficient operator-coarsening multigrid schemes for local discontinuous Galerkin methods

    Full text link
    An efficient hphp-multigrid scheme is presented for local discontinuous Galerkin (LDG) discretizations of elliptic problems, formulated around the idea of separately coarsening the underlying discrete gradient and divergence operators. We show that traditional multigrid coarsening of the primal formulation leads to poor and suboptimal multigrid performance, whereas coarsening of the flux formulation leads to optimal convergence and is equivalent to a purely geometric multigrid method. The resulting operator-coarsening schemes do not require the entire mesh hierarchy to be explicitly built, thereby obviating the need to compute quadrature rules, lifting operators, and other mesh-related quantities on coarse meshes. We show that good multigrid convergence rates are achieved in a variety of numerical tests on 2D and 3D uniform and adaptive Cartesian grids, as well as for curved domains using implicitly defined meshes and for multi-phase elliptic interface problems with complex geometry. Extension to non-LDG discretizations is briefly discussed
    corecore