8,466 research outputs found

    High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso

    Full text link
    The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear input-output dependency. We first show that, with particular choices of kernel functions, non-redundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments with thousands of features.Comment: 18 page

    Localized Lasso for High-Dimensional Regression

    Get PDF
    We introduce the localized Lasso, which is suited for learning models that are both interpretable and have a high predictive power in problems with high dimensionality dd and small sample size nn. More specifically, we consider a function defined by local sparse models, one at each data point. We introduce sample-wise network regularization to borrow strength across the models, and sample-wise exclusive group sparsity (a.k.a., â„“1,2\ell_{1,2} norm) to introduce diversity into the choice of feature sets in the local models. The local models are interpretable in terms of similarity of their sparsity patterns. The cost function is convex, and thus has a globally optimal solution. Moreover, we propose a simple yet efficient iterative least-squares based optimization procedure for the localized Lasso, which does not need a tuning parameter, and is guaranteed to converge to a globally optimal solution. The solution is empirically shown to outperform alternatives for both simulated and genomic personalized medicine data

    Inference for feature selection using the Lasso with high-dimensional data

    Full text link
    Penalized regression models such as the Lasso have proved useful for variable selection in many fields - especially for situations with high-dimensional data where the numbers of predictors far exceeds the number of observations. These methods identify and rank variables of importance but do not generally provide any inference of the selected variables. Thus, the variables selected might be the "most important" but need not be significant. We propose a significance test for the selection found by the Lasso. We introduce a procedure that computes inference and p-values for features chosen by the Lasso. This method rephrases the null hypothesis and uses a randomization approach which ensures that the error rate is controlled even for small samples. We demonstrate the ability of the algorithm to compute pp-values of the expected magnitude with simulated data using a multitude of scenarios that involve various effects strengths and correlation between predictors. The algorithm is also applied to a prostate cancer dataset that has been analyzed in recent papers on the subject. The proposed method is found to provide a powerful way to make inference for feature selection even for small samples and when the number of predictors are several orders of magnitude larger than the number of observations. The algorithm is implemented in the MESS package in R and is freely available
    • …
    corecore