4,183 research outputs found

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Cloud-Edge Non-Orthogonal Transmission for Fog Networks with Delayed CSI at the Cloud

    Full text link
    In a Fog Radio Access Network (F-RAN), the cloud processor (CP) collects channel state information (CSI) from the edge nodes (ENs) over fronthaul links. As a result, the CSI at the cloud is generally affected by an error due to outdating. In this work, the problem of content delivery based on fronthaul transmission and edge caching is studied from an information-theoretic perspective in the high signal-to-noise ratio (SNR) regime. For the set-up under study, under the assumption of perfect CSI, prior work has shown the (approximate or exact) optimality of a scheme in which the ENs transmit information received from the cloud and cached contents over orthogonal resources. In this work, it is demonstrated that a non-orthogonal transmission scheme is able to substantially improve the latency performance in the presence of imperfect CSI at the cloud.Comment: 5 pages, 4 figures, submitte

    Zero-Delay Rate Distortion via Filtering for Vector-Valued Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector-valued Gauss-Markov source subject to a mean-squared error (MSE) fidelity criterion characterized by the operational zero-delay vector-valued Gaussian rate distortion function (RDF). We address this problem by considering the nonanticipative RDF (NRDF) which is a lower bound to the causal optimal performance theoretically attainable (OPTA) function and operational zero-delay RDF. We recall the realization that corresponds to the optimal "test-channel" of the Gaussian NRDF, when considering a vector Gauss-Markov source subject to a MSE distortion in the finite time horizon. Then, we introduce sufficient conditions to show existence of solution for this problem in the infinite time horizon. For the asymptotic regime, we use the asymptotic characterization of the Gaussian NRDF to provide a new equivalent realization scheme with feedback which is characterized by a resource allocation (reverse-waterfilling) problem across the dimension of the vector source. We leverage the new realization to derive a predictive coding scheme via lattice quantization with subtractive dither and joint memoryless entropy coding. This coding scheme offers an upper bound to the operational zero-delay vector-valued Gaussian RDF. When we use scalar quantization, then for "r" active dimensions of the vector Gauss-Markov source the gap between the obtained lower and theoretical upper bounds is less than or equal to 0.254r + 1 bits/vector. We further show that it is possible when we use vector quantization, and assume infinite dimensional Gauss-Markov sources to make the previous gap to be negligible, i.e., Gaussian NRDF approximates the operational zero-delay Gaussian RDF. We also extend our results to vector-valued Gaussian sources of any finite memory under mild conditions. Our theoretical framework is demonstrated with illustrative numerical experiments.Comment: 32 pages, 9 figures, published in IEEE Journal of Selected Topics in Signal Processin

    MIMO First and Second Order Discrete Sliding Mode Controls of Uncertain Linear Systems under Implementation Imprecisions

    Full text link
    The performance of a conventional model-based controller significantly depends on the accuracy of the modeled dynamics. The model of a plant's dynamics is subjected to errors in estimating the numerical values of the physical parameters, and variations over operating environment conditions and time. These errors and variations in the parameters of a model are the major sources of uncertainty within the controller structure. Digital implementation of controller software on an actual electronic control unit (ECU) introduces another layer of uncertainty at the controller inputs/outputs. The implementation uncertainties are mostly due to data sampling and quantization via the analog-to-digital conversion (ADC) unit. The failure to address the model and ADC uncertainties during the early stages of a controller design cycle results in a costly and time consuming verification and validation (V&V) process. In this paper, new formulations of the first and second order discrete sliding mode controllers (DSMC) are presented for a general class of uncertain linear systems. The knowledge of the ADC imprecisions is incorporated into the proposed DSMCs via an online ADC uncertainty prediction mechanism to improve the controller robustness characteristics. Moreover, the DSMCs are equipped with adaptation laws to remove two different types of modeling uncertainties (multiplicative and additive) from the parameters of the linear system model. The proposed adaptive DSMCs are evaluated on a DC motor speed control problem in real-time using a processor-in-the-loop (PIL) setup with an actual ECU. The results show that the proposed SISO and MIMO second order DSMCs improve the conventional SISO first order DSMC tracking performance by 69% and 84%, respectively. Moreover, the proposed adaptation mechanism is able to remove the uncertainties in the model by up to 90%.Comment: 10 pages, 11 figures, ASME 2017 Dynamic Systems and Control Conferenc

    Centralized and distributed semi-parametric compression of piecewise smooth functions

    No full text
    This thesis introduces novel wavelet-based semi-parametric centralized and distributed compression methods for a class of piecewise smooth functions. Our proposed compression schemes are based on a non-conventional transform coding structure with simple independent encoders and a complex joint decoder. Current centralized state-of-the-art compression schemes are based on the conventional structure where an encoder is relatively complex and nonlinear. In addition, the setting usually allows the encoder to observe the entire source. Recently, there has been an increasing need for compression schemes where the encoder is lower in complexity and, instead, the decoder has to handle more computationally intensive tasks. Furthermore, the setup may involve multiple encoders, where each one can only partially observe the source. Such scenario is often referred to as distributed source coding. In the first part, we focus on the dual situation of the centralized compression where the encoder is linear and the decoder is nonlinear. Our analysis is centered around a class of 1-D piecewise smooth functions. We show that, by incorporating parametric estimation into the decoding procedure, it is possible to achieve the same distortion- rate performance as that of a conventional wavelet-based compression scheme. We also present a new constructive approach to parametric estimation based on the sampling results of signals with finite rate of innovation. The second part of the thesis focuses on the distributed compression scenario, where each independent encoder partially observes the 1-D piecewise smooth function. We propose a new wavelet-based distributed compression scheme that uses parametric estimation to perform joint decoding. Our distortion-rate analysis shows that it is possible for the proposed scheme to achieve that same compression performance as that of a joint encoding scheme. Lastly, we apply the proposed theoretical framework in the context of distributed image and video compression. We start by considering a simplified model of the video signal and show that we can achieve distortion-rate performance close to that of a joint encoding scheme. We then present practical compression schemes for real world signals. Our simulations confirm the improvement in performance over classical schemes, both in terms of the PSNR and the visual quality
    • …
    corecore