9,675 research outputs found

    Inverse design and implementation of a wavelength demultiplexing grating coupler

    Get PDF
    Nanophotonics has emerged as a powerful tool for manipulating light on chips. Almost all of today's devices, however, have been designed using slow and ineffective brute-force search methods, leading in many cases to limited device performance. In this article, we provide a complete demonstration of our recently proposed inverse design technique, wherein the user specifies design constraints in the form of target fields rather than a dielectric constant profile, and in particular we use this method to demonstrate a new demultiplexing grating. The novel grating, which has not been developed using conventional techniques, accepts a vertical-incident Gaussian beam from a free-space and separates O-band (1300nm)(1300\mathrm{nm}) and C-band (1550nm)(1550\mathrm{nm}) light into separate waveguides. This inverse design concept is simple and extendable to a broad class of highly compact devices including frequency splitters, mode converters, and spatial mode multiplexers.Comment: 17 pages, 4 figures, 1 table. A supplementary section describing the inverse-design algorithm in detail has been added, in addition to minor corrections and updated reference

    Cascadic multigrid algorithm for robust inverse mask synthesis in optical lithography

    Get PDF
    published_or_final_versio

    Robust source and mask optimization compensating for mask topography effects in computational lithography

    Get PDF
    Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optimization approach incorporating pupil wavefront aberrations into SMO procedure is developed as an alternative to maximize the uDOF. We first design the pupil wavefront function by adding primary and secondary spherical aberrations through the coefficients of the Zernike polynomials, and then apply the conjugate gradient method to achieve an optimal source-mask pair under the condition of aberrated pupil. We also use a statistical model to determine the Zernike coefficients for the phase control and adjustment. Rigorous simulations of thick masks show that this approach provides compensation for mask topography effects by improving the pattern fidelity and increasing uDOF.published_or_final_versio
    corecore