
Title Robust source and mask optimization compensating for mask
topography effects in computational lithography

Author(s) Li, J; Lam, EYM

Citation Optics Express, 2014, v. 22 n. 8, p. 9471-9485

Issued Date 2014

URL http://hdl.handle.net/10722/200619

Rights Optics Express. Copyright © Optical Society of America.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38051391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Robust source and mask optimization
compensating for mask topography
effects in computational lithography
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Abstract: Mask topography effects need to be taken into consideration for
a more accurate solution of source mask optimization (SMO) in advanced
optical lithography. However, rigorous 3D mask models generally involve
intensive computation and conventional SMO fails to manipulate the
mask-induced undesired phase errors that degrade the usable depth of
focus (uDOF) and process yield. In this work, an optimization approach
incorporating pupil wavefront aberrations into SMO procedure is developed
as an alternative to maximize the uDOF. We first design the pupil wavefront
function by adding primary and secondary spherical aberrations through
the coefficients of the Zernike polynomials, and then apply the conjugate
gradient method to achieve an optimal source-mask pair under the condition
of aberrated pupil. We also use a statistical model to determine the Zernike
coefficients for the phase control and adjustment. Rigorous simulations
of thick masks show that this approach provides compensation for mask
topography effects by improving the pattern fidelity and increasing uDOF.

© 2014 Optical Society of America

OCIS codes: (110.4235) Nanolithography; (110.5220) Photolithography; (110.1758) Compu-
tational imaging.
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1. Introduction

Continuous development of advanced computational lithography techniques are required to
reduce the deterioration of image fidelity and increase the process window (PW) in ultra low-
k1 optical lithography [1]. One of the limitations to PW is the noticeable difference in best
focus among various feature sizes [2,3]. This best focus shift effect, together with several other
significant physical effects, is investigated in rigorous 3D mask simulations [4]. Confirmed by
the experimental results, 3D mask topography is a leading cause of these effects that occur
when the features on the mask are smaller than the illumination wavelength [3,5]. In contrast to
the thin mask model (Kirchhoff approximation approach), the thickness of the mask absorber
produces phase errors among diffraction orders. These phase errors result in pitch-dependent
best focus, thereby reducing the usable depth of focus (uDOF) [6, 7].

In order to accurately predict and describe the mask-induced phase effects, rigorous electro-
magnetic field (EMF) modeling is applied to light diffraction from the mask, taking the com-
plete information of the mask topography and its material properties into account. Several well
known numerical algorithms of solving Maxwell’s equations, such as finite-difference time do-
main (FDTD) [8], rigorous coupled wave analysis (RCWA) [9] or the waveguide method [10]
are used to model the light propagation through the mask in optical lithography. Unfortunately,
the convergence of rigorous methods depends on mesh setting, accuracy requirements and
boundary conditions [11]. As a consequence, high accuracy is achieved at a large computa-
tional cost, which limits the wide adoption of rigorous 3D mask modeling for practical large
layout simulations in advanced resolution enhancement techniques (RETs) such as source and
mask optimization (SMO) [12, 13].

SMO is considered as a way to obtain higher image fidelity and improved performance on
process aberration stability to a given design, as 22nm feature generation and beyond are ex-
pected to run on current immersion lithography technology [14–16]. Nevertheless, although
SMO provides more flexibility regarding both the mask design and illumination configuration
adjustment, it is inadequate to control the phase in the lens pupil [17–19]. To compensate for the
phase errors induced by mask topography effects, additional degrees of freedom are required
in terms of phase manipulation. It is now necessary to incorporate the phase parameter into
source and mask optimization, a process known as mask-topography-aware source and mask
optimization (mask-topography-aware SMO).

This paper focuses on a robust algorithm using inverse synthesis technique to co-optimize the
source and the mask, and the major contributions are twofold. First, unlike SMO, the proposed
scheme takes advantage of the fact that pupil phase manipulation can partially compensate for
thick mask topography effects [20]. It incorporates some helpful pupil aberration terms such
as primary and secondary spherical aberrations through statistical model of Zernike polyno-
mials, resulting in the optimal source and mask that are not only robust against specific pupil
aberration, but are also robust against similar imaging effects caused by mask topography. We
demonstrate the better algorithmic performance with fewer pattern errors. Second, in terms
of process robustness, we achieve a larger uDOF compared to the SMO method without con-
sidering pupil wavefront function. This is fulfilled by introducing the lens pupil plane as an
additional parameter. In addition, the whole optimization procedure is performed based on the
thin mask model, which ensures that the speed is faster than that based on rigorous model. To
verify the practicability and effectiveness of the algorithm, we compare all the printed image
fidelity and PW through rigorous EMF simulations.

2. Forward imaging model with aberration

A critical step in computational lithography is to model the imaging process accurately, with
the various parameters available for adjustment. To include the pupil aberrations such that they
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occur in the practical lithography process, the aerial image Ia(x,y) under a partially coherent
illumination (PCI) system can be described as [21]

Ia(x,y) =

∞∫∫

−∞

J( f ,g)
∣∣∣

∞∫∫

−∞

Ĥ( f + f1,g+g1)e
i2πW (ρ ,θ)M̂( f1,g1)e

−i2π( f1x+g1y) d f1 dg1

∣∣∣2 d f dg.

(1)
In Eq.(1), M̂ represents the spectrum of input mask pattern M(x,y), and Ĥ is the ideal pupil

function of the optical system under nominal conditions. The wavefront aberration function,
denoted by W (ρ ,θ), is incorporated by multiplying an exponential term with it as power in
the frequency domain. The parameter ρ indicates the relative radial pupil position, while θ is
the polar angle, represented by ρ =

√
f 2 +g2 and θ = arctan(g/ f ). The function J( f ,g) ≥ 0

represents the effective source, which is normalized by its total energy [22, 23], i.e.,

J( f ,g) =
J′( f ,g)

∞∫∫
−∞

J′( f ,g) d f dg
, (2)

where J′( f ,g) is an arbitrary source point.
For image computation, we use the discrete form of Eq. (1), given approximated by

Ia(x,y)≈
∑ f ,g

{
J′( f ,g)

∣∣M(x,y)∗H(x,y)
∣∣2}

∑ f ,g J′( f ,g)
. (3)

We obtain the aberrated point spread function H(x,y) by taking the inverse Fourier transform
(F−1) of the pupil function with aberrations, i.e.,

H(x,y) = F−1
{

Ĥ( f ,g)ei2πW (ρ ,θ)
}
. (4)

The photoresist is exposed according to the intensity distribution of the aerial image Ia(x,y)
and developed to form the printed image I(x,y). Approximating the resist effect with a sigmoid
function due to its differentiability [24], the output I(x,y) is given by

I(x,y) = sig
{

Ia(x,y)
}
=

1

1+ e−α[Ia(x,y)−tr]
, (5)

in which tr is the threshold and α indicates the steepness of the sigmoid function.

3. Mask-topography-aware source and mask optimization algorithm

The objective of our work is to devise a method that incorporates pupil aberrations into source
mask corrections to compensate for photomask topography degraded uDOF. In this section,
first we describe how to design a pupil aberration function including specific aberration terms
to effectively compensate 3D mask effects and analyze the rationale behind it. Then, with the
aberrated transfer function, the mask and source updates are performed alternately until the
termination criterion is reached.

3.1. Aberration-aware pupil function

Deviation of wavefronts, also known as aberration, represents the difference between the optical
path lengths of the ray under consideration and the chief ray in traveling from the point object
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Fig. 1. Pupil wavefront distribution: a combination of primary and secondary spherical
aberration.

to the reference sphere [25]. The circular wavefront profiles associated with aberrations can be
mathematically modeled using Zernike polynomials [26], defined as

W (ρ ,θ) =
∞

∑
i=−∞

ziFi(ρ ,θ), (6)

where Fi(ρ ,θ) is the ith polynominal term with zi being the ith Zernike coefficient. In general,
the Zernike functions are orthogonal in the pupil space, but not in the image space. However,
sufficiently small aberrations, as they occur in lithographic projection systems, are almost linear
independent in the image space as well. Thus individual aberration contributions to an overall
wavefront can be isolated and quantified separately in this work.

Previous studies have found that mask topography effects have similar impact on the lithog-
raphy imaging performance to those caused by wave aberrations [27, 28]. Consequently, the
mask-induced phase deformation can be partially compensated by a manipulation of the pupil
lens [20]. Indeed, the simulation results exhibit that primary spherical aberrations (Zernike term
z9) have the highest sensitivity, which means a large impact on linewidth through focus, and 1D
lines are also prone to be affected by other spherical aberrations such as secondary spherical
(Zernike term z16) since the spherical aberrations have radially dependent and rotationally sym-
metric form [28]. Although inclusion of other Zernike terms, such as astigmatism, may provide
a further improvement, the run time will also increase along with it. The wavefront function
W (ρ ,θ) in this work is therefore composed of spherical and secondary spherical aberrations to
improve the imaging performance, as

W (ρ ,θ) = z9
(
6ρ4 −6ρ2 +1

)
+ z16

(
20ρ6 −30ρ4 +12ρ2 −1

)
. (7)

A pupil wavefront distribution which combines a z9 = −0.08 value of primary spherical aber-
ration and a z16 = 0.02 value of secondary spherical aberration is shown in Fig. 1.

Substituting Eq. (7) into Eq. (4), we then use H(x,y;z9,z16) to represent the point spread
function with primary and secondary spherical aberrations, given by

H(x,y;z9,z16) = F−1
{

Ĥ( f ,g)ei2π
[

z9(6ρ4−6ρ2+1)+z16(20ρ6−30ρ4+12ρ2−1)
]}

. (8)

After designing the pupil aberration function, we need to choose the Zernike coefficient
values for the corresponding Zernike polynomials, which are the wavefront errors in wave-
lengths and are presented in units of waves. For instance, a coefficient of 0.1 means an aberra-
tion with the maximum value at 0.1λ = 0.1×193nm = 19.3nm [28].
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To determine the Zernike coefficient values, we treat the aberration as a statistical model.
Based on the description in Ref. [29,30], it is a reasonable assumption to model the coefficients
as independent, normally distributed random variables with zero mean and identical non-zero
variance. One obvious advantage of doing so is that it is not necessary to spend time seeking
the optimized coefficient; after all, there may not exist a definite coefficient value beneficial for
all the different feature sizes. Compared with the exhaustive search method in Ref. [28], the
statistical model is more suitable for SMO, because during the iterative process of SMO, the
mask pattern changes for every update and the imaging impact induced by mask topography
goes with it. Hence, chances are that the optimal Zernike coefficients z9 and z16 found for target
pattern are different from those for the optimized mask resulting from SMO. Additionally, this
caters for not only the nominal condition or certain aberration but optimizes over a range of
variations. The objective function takes expectations of a weighted sum of the nominal and
the aberration terms to optimize the average performance of layouts, in which the weighting
coefficients are determined by the statistical probability of aberration terms appearing over a
range. Therefore, this strategy compensates for both the lens aberrations and thick mask induced
aberrations.

3.2. Source mask optimization framework for statistical model

Given the mask patterns, we not only consider the impact of the coefficient of primary spher-
ical aberration on the compensation for 3D mask effects, but also select secondary spherical
aberration to enable further tuning of the contributions of higher diffraction order. During the
following process of source and mask optimization, the printed image I(x,y;z9,z16) is calcu-
lated under the circumstance of the spherical aberrated pupil, rather than an ideal pupil without
any aberrations.

To achieve the smallest accumulated pattern error, we generate the optimal source mask pair
by minimizing the sum of the mismatches between the printed image and the desired one over
all locations. The expectation of the difference with respect to primary and secondary spherical
aberrations is minimized to find the optimal solutions that are robust to process variations.
Mathematically, the mask-topography-aware SMO minimization problem is formulated by a
statistical model as

minimize
m

E

{∥∥I(x,y;z9,z16)− I0(x,y)
∥∥2

2

}

subject to M(x,y) ∈ {0,1},
J( f ,g)≥ 0, (9)

where E {·} takes the expectation operation in a range of z9 and z16. However, it is difficult
to calculate the expectation integral due to the nonlinearity of the square of the �2 norm. To
address this issue, we discretize z9 to take on a set of values z9m with probability p(z9m), and
the discretization for z16 follows a similar approach, a set of z16 with probabilities p(z16n).
Since the maximum optimization of wavefront deformation by the lens manipulation may be
limited, restricted boundary conditions must be used during optimization, thus both z9 and
z16 are treated as normally distributed random variables within [−0.1,0.1] in this work with
standard deviation 0.05. This leads to the following cost function

E

{∥∥I(x,y;z9,z16)− I0(x,y)
∥∥2

2

}
≈ ∑

m,n
p(z9m)p(z16n)

{∥∥I(x,y;z9m,z16n)− I0(x,y)
∥∥2

2

}
(10)

Gradient methods are frequently used to tackle the optimization problem iteratively. Here
we define the differential operator ∇F(a) to evaluate the gradient of a function F with re-
spect to its argument a in the discrete domain, due to the discrete nature of the mask and
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source. In mask-topography-aware SMO, we first compute two gradients: one is the derivative
of

∥∥I(x,y;z9m,z16n)− I0(x,y)
∥∥2

2 with respect to an arbitrary source point J′( f ,g), and the other
one is the derivative with respect to the mask M(x,y), respectively denoted as ∇Fm,n(J′) and
∇Fm,n(M). As shown in the Appendix, these are given by

∇Fm,n(M) = ∑
f ,g

J( f ,g)�Re
{[

2α(I− I0)� I� (1− I)� (M ∗H(x,y;z9m,z16n))
†]∗ H̃

}
,

(11)

∇Fm,n(J
′) = ∑

x,y
2α(I− I0)� I� (1− I)�

∣∣M ∗H(x,y;z9m,z16n)
∣∣2 − Ia

∑ f ,g J′( f ,g)
, (12)

where H̃(x,y;z9m,z16n) = H(−x,−y;z9m,z16n), and symbol † is a complex conjugate operator
and � indicates pixel-by-pixel multiplication.

We then sum it for all values of m and n to incorporate the possible primary and secondary
spherical variations. Hence, the gradients of E we need are

∇Em,n(M) = ∑
m,n

p(z9m)p(z16n)∇Fm,n(M), (13)

∇Em,n(J
′) = ∑

m,n
p(z9m)p(z16n)∇Fm,n(J

′). (14)

The optimization is solved iteratively using nonlinear conjugate-gradient (CG) methods [31],
and the updating process is similar to our previous work in Refs. [22] and [23]. The target
pattern is assigned as the initial mask, and the first mask optimization is performed with a fixed
traditional annular illumination. SMO works by alternating between optimizing the mask given
the source, and updating the source by keeping the mask fixed, and repeating these two steps
until a stopping criterion is satisfied.

We now explain in detail how the mask and source optimization are performed. First, we

calculate the gradient with respect to M, as in Eq. (13), and then update the scalar α(k)
m , given

by

α(k)
m =

∇Em,n(M)(k)
(

∇Em,n(M)(k)−∇Em,n(M)(k−1)
)

(
∇Em,n(M)(k)−∇Em,n(M)(k−1)

)
r(k−1)
m

, (15)

where the superscript k with brackets denotes the kth iteration, and r(0)m = 0 in the initialization

step. Next, we compute the residual r(k)m at the kth step by

r(k)m =−∇Em,n(M)(k) +α(k)
m r(k−1)

m , (16)

which ensures the directions are always descending for the cost function. Finally, the current
mask is obtained by

M(k+1) = M(k) + s1r(k)m , (17)

where s1 is a small constant known as the step size.
The above steps are mask optimization procedure, which will run for a pre-defined number

of iterations, and the resulting optimal mask is then used during the following source updates.
The core of the source optimization follows a similar approach, except for using the gradient
expressions in Eq. (12) and Eq. (14), and the step size s2 is set for updating the source, given
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by

α(k)
s =

∇Em,n(J′)(k)
(

∇Em,n(J′)(k)−∇Em,n(J′)(k−1)
)

(
∇Em,n(J′)(k)−∇Em,n(J′)(k−1)

)
r(k−1)
s

, (18)

r(k)s =−∇Em,n(J
′)(k) +α(k)

s r(k−1)
s , (19)

J(k+1) = J(k) + s2r(k)s . (20)

The updating steps of source optimization is described in the above three equations, which
will also run for a fixed number of iterations and output the optimal source to the succeeding
mask updates. Then the mask optimization and source optimization are performed alternately
until we check if the overall stop condition is satisfied; if not, the mask optimization procedure
and source optimization procedure are performed again. Otherwise, a final mask optimization
is run to generate a new source-mask pair.

4. Results

To evaluate the performance of the proposed mask-topography-aware SMO algorithm, we com-
pare and analyze the simulation results in terms of pattern error and usable depth of focus. Two
kinds of target patterns are used: a vertical line/space design with three different pitches and
alternatively arranged brick poly array, as shown in Fig. 2. All images are represented by a
151× 151 matrix with a pixel size of 4nm× 4nm and critical dimension (CD) of 32nm; the
absorbers are composed of two layers, 55nm of Cr (n = 1.477/k = 1.762) below 18nm of
CrO (n = 1.965/k = 1.201). An annular illumination composed of 21×21 pixels with its inner
annulus σin = 0.7 and outer annulus σout = 0.9 is adopted as the initial value for our source op-
timization. The parameters of the projection system are set to be λ = 193nm and NA = 1.35.
In the sigmoid function, tr is equal to 0.3 for Kirchhoff approximation simulation, while given
the intensity losses induced by mask topography, it is determined according to the intensity
distribution of the aerial image Ia(x,y) in rigorous mask model computation. In addition, for
a certain circuit pattern, we assign the same tr value for both conventional SMO and mask-
topography-aware SMO in rigorous simulations.

In order to evaluate the image fidelity, we compare the optimization results using our pro-
posed mask-topography-aware SMO framework with an SMO with ideal pupil, where the
line/space pattern in Figs. 2(a) – 2(c) are used as input. All simulations and process window
analysis in this Section are performed using the Fraunhofer IISB development and research
lithography simulator Dr.LiTHO, which computes the mask near fields through the waveguide
method [4]. Here, we firstly analyze the optimization results for the vertical lines at 112nm
pitch, while the other two results will be given in the following description. Figures 3(a) – 3(c)
respectively display the resulting source, the optimized mask and the printed image at nominal
conditions using the conventional SMO. The corresponding results from the robust SMO with
spherical aberrations are given in the following row with the same structure. Comparing the cir-
cuit images shown in Figs. 3(c) and 3(f), we observe that not only the end regions but also the
middle lines in the former have more distortions, which signifies that our method has a better
resolution enhancement capacity over such regions. It can also be seen from the comparison
of Figs. 3(a) and 3(d) that inclusion of Zernike term of spherical aberration in the optimization
procedure can provide a more reasonable source shape, since source points along the horizon-
tal axis are helpful in printing vertical lines and spaces [32–34]. All the optimized sources are
normalized by the maximum pixel intensity for better visualization.

Simulation is also conducted with the other kind of pattern: brick poly array in Fig. 2(d) as
input, using our proposed SMO framework and conventional SMO without applied wavefront
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Fig. 2. Two kinds of test patterns used in simulation: (a)–(c) vertical line/space design
with different pitches and (d) brick poly array. Red lines mark the critical locations for
measuring the process window.

aberrations. This can be regarded as further evidence that the circuit pattern quality is indeed
improved by mask-topography-aware SMO. Figure 4 presents the corresponding results in a
way similar to the above. It is worth noting that printed image fidelity in Fig. 4(f), using the
proposed SMO including Zernike terms z9 and z16, is improved, showing 66% reduced pattern
errors than that in Fig. 4(c). Especially for the four polys located in the four corners of the
image, SMO nearly fails to print them, which is likely to disable the circuit from functioning
normally. In contrast, they can achieve a much better shape during mask-topography-aware
SMO.

Table 1 summarizes the measurement of the pattern errors for the two kinds of test patterns,
where we compute the mask near fields with Kirchhoff thin mask model and thick mask model
respectively. For each model, we compare the results from the two methods. Because the whole
optimization procedure is performed based on the thin mask model, the optimal source mask
pairs resulting from SMO and mask-topography-aware SMO produce similar pattern errors in
Kirchhoff approximation simulation. Although they both have “good enough” performance for
thin mask, they lead to distinguishing outputs for rigorous simulations, where reduced pattern
errors indicate an improved image fidelity. For all the test patterns, mask-topography-aware
SMO can achieve a better performance in rigorous simulations, reducing the pattern errors by
14% to 66%. In particular, dense features represented by 96nm pitch have the biggest differ-
ence between the two methods. This is consistent with our observation in the aerial images of
Figs. 5(b) and 5(d). This result is related to the fact that SMO does not generate helpful assisted
features in the optimal mask, which has no significant impact on image in thin mask model com-
putation. However, for rigorous simulation, the absence of assisted features causes undesired
sidelobe printing and there is no safe intensity at which the sidelobes do not print, as illustrated
in Fig. 5(b). Accordingly, incorporating sensitive aberrations terms in mask-topography-aware
SMO allows a more robust design against the mask-induced aberrations.
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Fig. 3. Simulation results of 32nm vertical lines at 112nm pitch.

Moreover, we compare with another approach where the pupil is manipulated after the SMO,
which is called source-mask-pupil optimization (SMPO) [18]. We run the simulations using the
optimal sources and masks resulting from SMO to see the pattern error change versus z9 coeffi-
cients, as plotted in Fig. 6. For both cases, it can be observed from Fig. 6 that when z9 changes
within [−0.1,0.1], all the pattern errors resulting from the SMO approach are larger than those
from mask-topography-aware SMO. In other words, even if the pupil wavefront receives fur-
ther control after SMO, the proposed robust SMO algorithm, which incorporates pupil spherical
aberrations into the source and mask optimization processes, can still deliver a better design.
This verifies that a combination of z9 and z16 in the way shown in our method would provide
compensation effectively. Furthermore, Fig. 6 also shows that the statistical aberration model
adopted in our method is not only applicable to a certain aberration condition, but optimizes the
performance over a range of spherical variations. As a result, even if the optimal z9 coefficient
is not known in advance, the proposed SMO algorithm with statistical model can still deliver
a better design which is robust to spherical aberration. The above simulation results also af-
firm that the proposed mask-topography-aware SMO is capable of compensating for both thick
mask induced aberration and lens aberrations.

After evaluating the image quality of different algorithms, we can now assess the robust-
ness of the proposed algorithm in terms of the process window. Figure 7 depicts the aver-
age exposure-defocus window comparison for line/space pattern involving SMO without pupil
aberration versus mask-topography-aware SMO. For each pitch, the middle line represents the
dose values to create the target linewidth, and the other two respectively correspond to the max-
imum and minimum doses with linewidth change within 10% [4]. The minimum feature size
(also the width of the feature) is chosen as the critical regions, as marked by the red lines in
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Fig. 4. Simulation results of brick poly array pattern.

Figs. 2(a) – 2(c). With no pupil wavefront aberration, the vertical lines at three different pitches
have no overlapping process windows caused by deviation in the best exposure dose, as shown
in Fig. 7(a). In comparison, a larger uDOF is observed in Fig. 7(b), where the proposed SMO
algorithm including both z9 and z16 coefficients increases the process capability by produc-
ing a 60nm larger defocus range than the conventional SMO method, demonstrating enhanced
process robustness.

Another noticeable change is that both 96nm and 112nm pitch lines resulting from SMO
have obvious best focus shift, as illustrated by blue solid lines and green dotted lines in Fig. 7(a).
Rigorous computation exhibits an asymmetry in the curve, whereas the process windows ob-
tained with mask-topography-aware SMO corrects the focus shift for both configurations. Such
results are reasonable because the consideration of pupil wavefront, in the form of spherical
aberration in the optimization procedure, can adjust the phase shift induced by the thick ab-
sorber, thereby compensating for pitch dependent best focus and increasing uDOF. Figure 8
exhibits similar improvements of PW for brick poly array. For three critical locations, namely,
88nm gap (position 1), 116nm height (position 2) and 72nm gap (position 3), the degraded
uDOF is increased from 0nm for SMO in Fig. 8(a) to 60nm with wavefront aberration cor-
rection in Fig. 8(b). Furthermore, process window of 88nm and 72nm gap have negative best
focus shift, while position 2 shifts in the opposite direction in Fig. 8(a). This best focus variation
is decreased through the proposed robust SMO method. Note that Fig. 8(a) can hardly obtain
the magenta curves that represent the process window of 32nm poly width (position 4), which
means that once the focus changes, SMO cannot output a feasible design, while our method
keeps the feature size changing within 10%. Similar situations can also be seen in Fig. 7(a),
where the blue curves vanish when the defocus exceeds 64nm. These results are essentially in
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Table 1. Comparison of performance with different models and methods.

Test patterns Pitch Model Methods PE

(nm) (pixels)

SMO 88Kirchhoff model
mask-topography-aware SMO 10096

SMO 2630Rigorous model
mask-topography-aware SMO 948

SMO 56Kirchhoff model
mask-topography-aware SMO 204Vertical lines 112

SMO 796Rigorous model
mask-topography-aware SMO 620

SMO 102Kirchhoff model
mask-topography-aware SMO 84124

SMO 820Rigorous model
mask-topography-aware SMO 708

SMO 391Kirchhoff model
mask-topography-aware SMO 415Brick poly array

SMO 3904Rigorous model
mask-topography-aware SMO 1346

agreement with the conclusions in Ref [28], i.e., the through-pitch best focus difference induced
by thick mask topography can be corrected effectively by applying pupil aberration functions
in the lens domain.

5. Conclusion

In this paper, a robust mask-topography-aware SMO algorithm is presented for thick mask
compensation in optical lithography. We apply the approach to 1D vertical line/space patterns
with different pitches, as well as to 2D features. Evaluations against SMO without incorpo-
rating pupil aberrations demonstrate that the combination of primary and secondary spherical
aberration terms deliver advantages such as high image fidelity, reduced best focus difference
and improved uDOF. This allows pupil aberration-aware source and mask co-optimization, to
be a prime candidate for computational lithography especially with the increasing severity of
mask-induced effects and the demand for highly accurate and fast simulations in the future.

A. Appendix: Gradients derivation

Here we compute the derivatives of the cost function in Eqs. (11) and (12). Due to the discrete
nature of the source and mask, the differential operator∂/∂M and ∂/∂J′ are approximated by
numerical differences.

The first gradient of the pattern fidelity term
∥∥I(x,y;z9m,z16n)− I0(x,y)

∥∥2
2 with respect to the
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(a) Optimized mask (b) Aerial image
from SMO

(c) Optimized mask from (d) Aerial image
mask-topography-aware SMO

Fig. 5. Simulated aerial image of 32nm vertical lines at 96nm pitch.
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Fig. 6. Simulated pattern errors at different primary spherical aberration values (z9) for: (a)
vertical line/space with different pitches and (b) brick poly array.

mask pattern is given by

∇Fm,n(M) =
∂ ∑x,y ‖I− I0‖2

2

∂M

=
[
2α(I− I0)� I� (1− I)� ∂ Ia

∂M

]

=∑
f ,g

J( f ,g)

�Re

{[
2α(I− I0)� I� (1− I)� (

M ∗H(x,y;z9m,z16n)
)†
]
∗ H̃

}
. (21)
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(a) (b)

Fig. 7. Simulated process window of vertical line/space with different pitches with (a)
conventional SMO without pupil aberration and (b) mask-topography-aware SMO.

(a) (b)

Fig. 8. Simulated process window of brick poly array with (a) conventional SMO without
pupil aberration and (b) mask-topography-aware SMO.

The analytical form of the partial gradients for the illumination source in Eq. (12) is

∇Fm,n(J
′) =

∂ ∑x,y ‖I− I0‖2
2

∂J′

=∑
x,y

2α(I− I0)� I� (1− I)� ∂ Ia
∂J′

=∑
x,y

2α(I− I0)� I� (1− I)

�
∣∣M ∗H(x,y;z9m,z16n)

∣∣2 ∑ f ,g J′( f ,g)−∑ f ,g J′( f ,g)
∣∣M ∗H(x,y;z9m,z16n)

∣∣2
[

∑ f ,g J′( f ,g)
]2

=∑
x,y

2α(I− I0)� I� (1− I)�
∣∣M ∗H(x,y;z9m,z16n)

∣∣2 − Ia
∑ f ,g J′( f ,g)

. (22)
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