7,964,576 research outputs found
High performance structures
Materials selection, structural geometry, proof testing and statistical screening, prestressing, and system energy as tools for designing optimum trusses and other high performance structure
Improved high-performance shock tube
Mylar diaphragms in shock tubes are a major improvement over steel diaphragms. Other improvements include: better electrode design; improved flow by opening the throat and removing all constrictions; and improved driver geometry by optimizing volume and shape
High performance, high density hydrocarbon fuels
The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified
High-performance planar nanoscale dielectric capacitors
We propose a model for planar nanoscale dielectric capacitor consisting of a
single layer, insulating hexagonal boron nitride (BN) stripe placed between two
metallic graphene stripes, all forming commensurately a single atomic plane.
First-principles density functional calculations on these nanoscale capacitors
for different levels of charging and different widths of graphene - BN stripes
mark high gravimetric capacitance values, which are comparable to those of
supercapacitors made from other carbon based materials. Present nanocapacitor
model allows the fabrication of series, parallel and mixed combinations which
offer potential applications in 2D flexible nanoelectronics, energy storage and
heat-pressure sensing systems.Comment: Published version in PR
High performance ammonium nitrate propellant
A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine
High fidelity imaging and high performance computing in nonlinear EIT
We show that nonlinear EIT provides images with well defined characteristics when smoothness of the image is used as a constraint in the reconstruction process. We use the gradient of the logarithm of resistivity as an effective measure of image smoothness, which has the advantage that resistivity and conductivity are treated with equal weight. We suggest that a measure of the fidelity of the image to the object requires the explicit definition and application of such a constraint. The algorithm is applied to the simulation of intra-ventricular haemorrhaging (IVH) in a simple head model. The results indicate that a 5% increase in the blood content of the ventricles would be easily detectable with the noise performance of contemporary instrumentation. The possible implementation of the algorithm in real time via high performance computing is discussed
Transformations of High-Level Synthesis Codes for High-Performance Computing
Specialized hardware architectures promise a major step in performance and
energy efficiency over the traditional load/store devices currently employed in
large scale computing systems. The adoption of high-level synthesis (HLS) from
languages such as C/C++ and OpenCL has greatly increased programmer
productivity when designing for such platforms. While this has enabled a wider
audience to target specialized hardware, the optimization principles known from
traditional software design are no longer sufficient to implement
high-performance codes. Fast and efficient codes for reconfigurable platforms
are thus still challenging to design. To alleviate this, we present a set of
optimizing transformations for HLS, targeting scalable and efficient
architectures for high-performance computing (HPC) applications. Our work
provides a toolbox for developers, where we systematically identify classes of
transformations, the characteristics of their effect on the HLS code and the
resulting hardware (e.g., increases data reuse or resource consumption), and
the objectives that each transformation can target (e.g., resolve interface
contention, or increase parallelism). We show how these can be used to
efficiently exploit pipelining, on-chip distributed fast memory, and on-chip
streaming dataflow, allowing for massively parallel architectures. To quantify
the effect of our transformations, we use them to optimize a set of
throughput-oriented FPGA kernels, demonstrating that our enhancements are
sufficient to scale up parallelism within the hardware constraints. With the
transformations covered, we hope to establish a common framework for
performance engineers, compiler developers, and hardware developers, to tap
into the performance potential offered by specialized hardware architectures
using HLS
- …
