15,650 research outputs found

    Maximizing NFT Incentives: References Make You Rich

    Full text link
    In this paper, we study how to optimize existing Non-Fungible Token (NFT) incentives. Upon exploring a large number of NFT-related standards and real-world projects, we come across an unexpected finding. That is, the current NFT incentive mechanisms, often organized in an isolated and one-time-use fashion, tend to overlook their potential for scalable organizational structures. We propose, analyze, and implement a novel reference incentive model, which is inherently structured as a Directed Acyclic Graph (DAG)-based NFT network. This model aims to maximize connections (or references) between NFTs, enabling each isolated NFT to expand its network and accumulate rewards derived from subsequent or subscribed ones. We conduct both theoretical and practical analyses of the model, demonstrating its optimal utility

    DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation

    Full text link
    In recent years, there has been growing focus on the study of automated recommender systems. Music recommendation systems serve as a prominent domain for such works, both from an academic and a commercial perspective. A fundamental aspect of music perception is that music is experienced in temporal context and in sequence. In this work we present DJ-MC, a novel reinforcement-learning framework for music recommendation that does not recommend songs individually but rather song sequences, or playlists, based on a model of preferences for both songs and song transitions. The model is learned online and is uniquely adapted for each listener. To reduce exploration time, DJ-MC exploits user feedback to initialize a model, which it subsequently updates by reinforcement. We evaluate our framework with human participants using both real song and playlist data. Our results indicate that DJ-MC's ability to recommend sequences of songs provides a significant improvement over more straightforward approaches, which do not take transitions into account.Comment: -Updated to the most recent and completed version (to be presented at AAMAS 2015) -Updated author list. in Autonomous Agents and Multiagent Systems (AAMAS) 2015, Istanbul, Turkey, May 201

    Eliciting Expertise

    No full text
    Since the last edition of this book there have been rapid developments in the use and exploitation of formally elicited knowledge. Previously, (Shadbolt and Burton, 1995) the emphasis was on eliciting knowledge for the purpose of building expert or knowledge-based systems. These systems are computer programs intended to solve real-world problems, achieving the same level of accuracy as human experts. Knowledge engineering is the discipline that has evolved to support the whole process of specifying, developing and deploying knowledge-based systems (Schreiber et al., 2000) This chapter will discuss the problem of knowledge elicitation for knowledge intensive systems in general

    Integrating E-Commerce and Data Mining: Architecture and Challenges

    Full text link
    We show that the e-commerce domain can provide all the right ingredients for successful data mining and claim that it is a killer domain for data mining. We describe an integrated architecture, based on our expe-rience at Blue Martini Software, for supporting this integration. The architecture can dramatically reduce the pre-processing, cleaning, and data understanding effort often documented to take 80% of the time in knowledge discovery projects. We emphasize the need for data collection at the application server layer (not the web server) in order to support logging of data and metadata that is essential to the discovery process. We describe the data transformation bridges required from the transaction processing systems and customer event streams (e.g., clickstreams) to the data warehouse. We detail the mining workbench, which needs to provide multiple views of the data through reporting, data mining algorithms, visualization, and OLAP. We con-clude with a set of challenges.Comment: KDD workshop: WebKDD 200

    Behavioral Privacy Risks and Mitigation Approaches in Sharing of Wearable Inertial Sensor Data

    Get PDF
    Wrist-worn inertial sensors in activity trackers and smartwatches are increasingly being used for daily tracking of activity and sleep. Wearable devices, with their onboard sensors, provide appealing mobile health (mHealth) platform that can be leveraged for continuous and unobtrusive monitoring of an individual in their daily life. As a result, an adaptation of wrist-worn devices in many applications (such as health, sport, and recreation) increases. Additionally, an increasing number of sensory datasets consisting of motion sensor data from wrist-worn devices are becoming publicly available for research. However, releasing or sharing these wearable sensor data creates serious privacy concerns of the user. First, in many application domains (such as mHealth, insurance, and health provider), user identity is an integral part of the shared data. In such settings, instead of identity privacy preservation, the focus is more on the behavioral privacy problem that is the disclosure of sensitive behaviors from the shared sensor data. Second, different datasets usually focus on only a select subset of these behaviors. But, in the event that users can be re-identified from accelerometry data, different databases of motion data (contributed by the same user) can be linked, resulting in the revelation of sensitive behaviors or health diagnoses of a user that was neither originally declared by a data collector nor consented by the user. The contributions of this dissertation are multifold. First, to show the behavioral privacy risk in sharing the raw sensor, this dissertation presents a detailed case study of detecting cigarette smoking in the field. It proposes a new machine learning model, called puffMarker, that achieves a false positive rate of 1/6 (or 0.17) per day, with a recall rate of 87.5%, when tested in a field study with 61 newly abstinent daily smokers. Second, it proposes a model-based data substitution mechanism, namely mSieve, to protect behavioral privacy. It evaluates the efficacy of the scheme using 660 hours of raw sensor data collected and demonstrates that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors. Finally, it analyzes the risks of user re-identification from wrist-worn sensor data, even after applying mSieve for protecting behavioral privacy. It presents a deep learning architecture that can identify unique micro-movement pattern in each wearer\u27s wrists. A new consistency-distinction loss function is proposed to train the deep learning model for open set learning so as to maximize re-identification consistency for known users and amplify distinction with any unknown user. In 10 weeks of daily sensor wearing by 353 participants, we show that a known user can be re-identified with a 99.7% true matching rate while keeping the false acceptance rate to 0.1% for an unknown user. Finally, for mitigation, we show that injecting even a low level of Laplace noise in the data stream can limit the re-identification risk. This dissertation creates new research opportunities on understanding and mitigating risks and ethical challenges associated with behavioral privacy
    • …
    corecore