656 research outputs found

    Simulating the universe on an intercontinental grid of supercomputers

    Full text link
    Understanding the universe is hampered by the elusiveness of its most common constituent, cold dark matter. Almost impossible to observe, dark matter can be studied effectively by means of simulation and there is probably no other research field where simulation has led to so much progress in the last decade. Cosmological N-body simulations are an essential tool for evolving density perturbations in the nonlinear regime. Simulating the formation of large-scale structures in the universe, however, is still a challenge due to the enormous dynamic range in spatial and temporal coordinates, and due to the enormous computer resources required. The dynamic range is generally dealt with by the hybridization of numerical techniques. We deal with the computational requirements by connecting two supercomputers via an optical network and make them operate as a single machine. This is challenging, if only for the fact that the supercomputers of our choice are separated by half the planet, as one is located in Amsterdam and the other is in Tokyo. The co-scheduling of the two computers and the 'gridification' of the code enables us to achieve a 90% efficiency for this distributed intercontinental supercomputer.Comment: Accepted for publication in IEEE Compute

    MPWide: a light-weight library for efficient message passing over wide area networks

    Full text link
    We present MPWide, a light weight communication library which allows efficient message passing over a distributed network. MPWide has been designed to connect application running on distributed (super)computing resources, and to maximize the communication performance on wide area networks for those without administrative privileges. It can be used to provide message-passing between application, move files, and make very fast connections in client-server environments. MPWide has already been applied to enable distributed cosmological simulations across up to four supercomputers on two continents, and to couple two different bloodflow simulations to form a multiscale simulation.Comment: accepted by the Journal Of Open Research Software, 13 pages, 4 figures, 1 tabl

    Super computers in astrophysics and High Performance simulations of self-gravitating systems

    Full text link
    The modern study of the dynamics of stellar systems requires the use of high-performance computers. Indeed, an accurate modelization of the structure and evolution of self-gravitating systems like planetary systems, open clusters, globular clusters and galaxies imply the evaluation of body-body interaction over the whole size of the structure, a task that is computationally very expensive, in particular when it is performed over long intervals of time. In this report we give a concise overview of the main problems of stellar systems simulations and present some exciting results we obtained about the interaction of globular clusters with the parent galaxy.Comment: Invited talk at the SAIt 2003 national meeting (Trieste, Italy, 14 - 17 aprile 2003) to be published in the Proceedings; 6 pages+3 ps figure

    Stability of Multiplanetary Systems in Star Clusters

    Full text link
    Most stars form in star clusters and stellar associated. To understand the roles of star cluster environments in shaping the dynamical evolution of planetary systems, we carry out direct NN-body simulations of four planetary systems models in three different star cluster environments with respectively N=2k, 8k and 32k stars. In each cluster, an ensemble of initially identical planetary systems are assigned to solar-type stars with ∼1M⊙\sim 1 M_{\odot} and evolved for 50~Myr. We found that following the depletion of protoplanetary disks, external perturbations and planet-planet interactions are two driving mechanisms responsible for the destabilization of planetary systems. The planet survival rate varies from ∼95%\sim 95\% in the N=2k cluster to ∼60%\sim 60\% in the N=32k cluster, which suggests that most planetary systems can indeed survive in low-mass clusters, except in the central regions. We also find that planet ejections through stellar encounters are cumulative processes, as only ∼3%\sim 3\% of encounters are strong enough to excite the eccentricity by Δe≥0.5\Delta e \geq 0.5. Short-period planets can be perturbed through orbit crossings with long-period planets. When taking into account planet-planet interactions, the planet ejection rate nearly doubles, and therefore multiplicity contributes to the vulnerability of planetary systems. In each ensemble, ∼0.2%\sim 0.2\% of planetary orbits become retrograde due to random directions of stellar encounters. Our results predict that young low-mass star clusters are promising sites for next-generation planet surveys, yet low planet detection rates are expected in dense globular clusters such as 47 Tuc. Nevertheless, planets in denser stellar environments are likely to have shorter orbital periods, which enhances their detectability.Comment: 19 pages, 13 figures, 4 tables, accepted for publication in MNRA

    Working Papers: Astronomy and Astrophysics Panel Reports

    Get PDF
    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities
    • …
    corecore