56,298 research outputs found

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German

    System-Level Design of Energy-Proportional Many-Core Servers for Exascale Computing

    Get PDF
    Continuous advances in manufacturing technologies are enabling the development of more powerful and compact high-performance computing (HPC) servers made of many-core processing architectures. However, this soaring demand for computing power in the last years has grown faster than emiconductor technology evolution can sustain, and has produced as collateral undesirable effect a surge in power consumption and heat density in these new HPC servers, which result on significant performance degradation. In this keynote, I advocate to completely revise the current HPC server architectures. In particular, inspired by the mammalian brain, I propose to design a disruptive three-dimensional (3D) computing server architecture that overcomes the prevailing worst-case power and cooling provisioning paradigm for servers. This new 3D server design champions a new system-level thermal modeling, which can be used by novel proactive energy controllers for detailed heat and energy management in many-core HPC servers, thanks to micro-scale liquid cooling. Then, I will show the impact of new near-threshold computing architectures on server design, and how we can integrate new on-chip microfluidic fuel cell networks to enable energy-scalability in future generations of many-core HPC servers targeting Exascale computing.Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech

    Efficient Generation of Parallel Spin-images Using Dynamic Loop Scheduling

    Get PDF
    High performance computing (HPC) systems underwent a significant increase in their processing capabilities. Modern HPC systems combine large numbers of homogeneous and heterogeneous computing resources. Scalability is, therefore, an essential aspect of scientific applications to efficiently exploit the massive parallelism of modern HPC systems. This work introduces an efficient version of the parallel spin-image algorithm (PSIA), called EPSIA. The PSIA is a parallel version of the spin-image algorithm (SIA). The (P)SIA is used in various domains, such as 3D object recognition, categorization, and 3D face recognition. EPSIA refers to the extended version of the PSIA that integrates various well-known dynamic loop scheduling (DLS) techniques. The present work: (1) Proposes EPSIA, a novel flexible version of PSIA; (2) Showcases the benefits of applying DLS techniques for optimizing the performance of the PSIA; (3) Assesses the performance of the proposed EPSIA by conducting several scalability experiments. The performance results are promising and show that using well-known DLS techniques, the performance of the EPSIA outperforms the performance of the PSIA by a factor of 1.2 and 2 for homogeneous and heterogeneous computing resources, respectively

    EPOBF: Energy Efficient Allocation of Virtual Machines in High Performance Computing Cloud

    Full text link
    Cloud computing has become more popular in provision of computing resources under virtual machine (VM) abstraction for high performance computing (HPC) users to run their applications. A HPC cloud is such cloud computing environment. One of challenges of energy efficient resource allocation for VMs in HPC cloud is tradeoff between minimizing total energy consumption of physical machines (PMs) and satisfying Quality of Service (e.g. performance). On one hand, cloud providers want to maximize their profit by reducing the power cost (e.g. using the smallest number of running PMs). On the other hand, cloud customers (users) want highest performance for their applications. In this paper, we focus on the scenario that scheduler does not know global information about user jobs and user applications in the future. Users will request shortterm resources at fixed start times and non interrupted durations. We then propose a new allocation heuristic (named Energy-aware and Performance per watt oriented Bestfit (EPOBF)) that uses metric of performance per watt to choose which most energy-efficient PM for mapping each VM (e.g. maximum of MIPS per Watt). Using information from Feitelson's Parallel Workload Archive to model HPC jobs, we compare the proposed EPOBF to state of the art heuristics on heterogeneous PMs (each PM has multicore CPU). Simulations show that the EPOBF can reduce significant total energy consumption in comparison with state of the art allocation heuristics.Comment: 10 pages, in Procedings of International Conference on Advanced Computing and Applications, Journal of Science and Technology, Vietnamese Academy of Science and Technology, ISSN 0866-708X, Vol. 51, No. 4B, 201

    Study of Raspberry Pi 2 Quad-core Cortex A7 CPU Cluster as a Mini Supercomputer

    Full text link
    High performance computing (HPC) devices is no longer exclusive for academic, R&D, or military purposes. The use of HPC device such as supercomputer now growing rapidly as some new area arise such as big data, and computer simulation. It makes the use of supercomputer more inclusive. Todays supercomputer has a huge computing power, but requires an enormous amount of energy to operate. In contrast a single board computer (SBC) such as Raspberry Pi has minimum computing power, but require a small amount of energy to operate, and as a bonus it is small and cheap. This paper covers the result of utilizing many Raspberry Pi 2 SBCs, a quad-core Cortex A7 900 MHz, as a cluster to compensate its computing power. The high performance linpack (HPL) is used to benchmark the computing power, and a power meter with resolution 10mV / 10mA is used to measure the power consumption. The experiment shows that the increase of number of cores in every SBC member in a cluster is not giving significant increase in computing power. This experiment give a recommendation that 4 nodes is a maximum number of nodes for SBC cluster based on the characteristic of computing performance and power consumption.Comment: Pre-print of conference paper on International Conference on Information Technology and Electrical Engineerin

    The HPCG benchmark: analysis, shared memory preliminary improvements and evaluation on an Arm-based platform

    Get PDF
    The High-Performance Conjugate Gradient (HPCG) benchmark complements the LINPACK benchmark in the performance evaluation coverage of large High-Performance Computing (HPC) systems. Due to its lower arithmetic intensity and higher memory pressure, HPCG is recognized as a more representative benchmark for data-center and irregular memory access pattern workloads, therefore its popularity and acceptance is raising within the HPC community. As only a small fraction of the reference version of the HPCG benchmark is parallelized with shared memory techniques (OpenMP), we introduce in this report two OpenMP parallelization methods. Due to the increasing importance of Arm architecture in the HPC scenario, we evaluate our HPCG code at scale on a state-of-the-art HPC system based on Cavium ThunderX2 SoC. We consider our work as a contribution to the Arm ecosystem: along with this technical report, we plan in fact to release our code for boosting the tuning of the HPCG benchmark within the Arm community.Postprint (author's final draft

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Hierarchical Parallelisation of Functional Renormalisation Group Calculations -- hp-fRG

    Get PDF
    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes
    corecore