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Abstract

The High-Performance Conjugate Gradient (HPCG) benchmark complements the LIN-
PACK benchmark in the performance evaluation coverage of large High-Performance Com-
puting (HPC) systems. Due to its lower arithmetic intensity and higher memory pressure,
HPCG is recognized as a more representative benchmark for data-center and irregular mem-
ory access pattern workloads, therefore its popularity and acceptance is raising within the
HPC community. As only a small fraction of the reference version of the HPCG benchmark
is parallelized with shared memory techniques (OpenMP), we introduce in this report two
OpenMP parallelization methods. Due to the increasing importance of Arm architecture in
the HPC scenario, we evaluate our HPCG code at scale on a state-of-the-art HPC system based
on Cavium ThunderX2 SoC. We consider our work as a contribution to the Arm ecosystem:
along with this technical report, we plan in fact to release our code for boosting the tuning of
the HPCG benchmark within the Arm community.

1 Introduction and related work
While the LINPACK benchmark still is driving the Top500 ranking, the High Performance Con-
jugate Gradient (HPCG) [1] is widely accepted as an alternative choice complementing LINPACK
for evaluating the performance of large HPC systems. The main difference between the two bench-
marks is that LINPACK focuses on matrix-matrix multiplications, while HPCG solves a symmetric
sparse linear system of equations using the conjugate gradient method and the multigrid symmetric
Gauss-Seidel as preconditioner. Differences between the two benchmarks translate into a different
arithmetic intensity footprint, positioning HPCG in a less extreme or more realistic spot than
LINPACK, and therefore making it a good candidate for representing the behaviour of a large
fraction of today applications running on modern supercomputers [2, 3].

As for LINPACK, also for HPCG has started in recent years a race towards the fine-tuning
and porting on different architectures, showing that sometimes topping the Top500 do not imply
having good performance with HPCG. The example of the Sunway TaihuLight supercomputer, the
fastest LINPACK machine in the world, but with poor performance in HPCG [4].

Several examples of optimization for specific architectures for HPCG can be found in the liter-
ature. In [5] Park et al. present the effort performed by Intel for optimizing both shared memory
implementation and mitigating MPI communication overhead. GP-GPU implementation and eval-
uation can be found in [6]. At system level, it has been inspiring for us the work performed by
RIKEN team on the K computer presented in [7]: while we use similar coloring approaches, we
focused more on tuning algorithmic aspects like coloring parameters rather than focus on loops
and math kernels. Other evaluations of HPCG on recent architectures can be found in [8] for the
Tianhe-2 supercomputer and in [9] for the NEC SX-ACE. As background study about the numer-
ical methods behind HPCG, we consider relevant for our work [10, 11, 12] which cover coloring
and reordering. Worth mentioning the importance of [13] for modeling performance and [14] for
performance analysis and power efficiency.
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It is not a surprise anymore that Arm architecture is gaining momentum in the HPC panorama.
Several research projects have promoted and evaluated the readiness of various Arm-based plat-
forms for HPC [15, 16]. The interest towards Arm architecture increased recently after multiple
announcements of competitive Arm-based SoC and mainstream system integrators adding in their
product portfolio Arm-based solutions [17, 18, 19].

For these reasons, we begin a profiling and evaluation study of HPCG on publicly novel Arm
platforms available on the market. We targeted the HPCG reference version as well as two pre-
liminary improved versions which utilise OpenMP parallelization for the preconditioner. Our work
aims to build a new portable version starting from the HPCG reference source code. While main-
tain a level of portability across architectures, our approach based on de-facto standards differs
from other contributions like [20]. It also differs from [21] because we considered a different geom-
etry of the blocks. Exposing a fraction of serial code that can take advantage of the single-thread
performance allows us to increase cache reuse. Moreover, our block size does not impact too much
the number of iterations needed to convergence, as already shown in [5]. By releasing our code
to the Arm community we further enable additional optimizations targeting the Scalable Vector
Extension (SVE) introduced by Arm [22, 23].

The main contributions of this paper are: i) to introduce two coloring techniques for the
symmetric Gauss-Seidel preconditioner, that allow us to increase the performance of the OpenMP
version of HPCG by 9.5×, matching the performance of the MPI-only version; ii) to present a
detailed evaluation of HPCG on a cutting-edge ARMv8 processor, such as the Cavium ThunderX2.

The document is organized as follows: Section 2 briefly introduces high-level structure and
profiling of the HPCG benchmark. In Section 3 we describe two techniques for improving the per-
formance of HPCG in a shared memory programming environment, together with other potential
opportunities of performance gain. In Section 4 we then evaluate on a state-of-the-art Arm-based
platform the effects of our code changes, first at node level and then at scale, on a cluster of 8
nodes. We close with comments and conclusions in Section 5.

2 Benchmark characterization
The HPCG benchmark solves a symmetric sparse linear system mimicking the typical behaviour
of a finite element code on a 3D semi-regular grid. As explained in [1] the problem uses an additive
Schwarz preconditioner for a first domain decomposition, while each sub-domain is preconditioned
using a symmetric Gauss-Seidel sweep that is local to the sub-domain. In its current implemen-
tation, the most important numerical kernel for HPCG performance-wise is the 27-point stencil.
The benchmark is split in the following phases:

Problem setup and validation – During this phase, all the needed data structures to execute the
benchmark are constructed: the memory is allocated to store the sparse matrix that represents the
3-dimensional grid, the right-hand side vector and the result vector are also allocated. Processor
and process topologies are generated and stored. Once everything is setup, a validation process
checks that the generated matrix fulfills the requirements of the benchmark.

Compute reference SpMV and SymGS – The reference algebraic kernels sparse matrix-vector
(SpMV) multiplication and symmetric Gauss-Seidel (SymGS) are executed and benchmarked. The
timings collected in this phase will be used afterwards to check the possible improvements obtained
by user optimizations.

Compute a reference conjugate gradient (CG) – The reference version of the CG algorithm is
executed for a fixed number of iterations (50) and the reduction residual is stored. The same
reduction residual needs to be reached by the optimized version implemented by the user. This
implies that the optimized version can use a different CG algorithm requiring a different number
of iterations to reach the residual. Performance of the optimized version will be in fact recorded
independently from the number of iterations whenever (and only if) the reduction residual is
reached.

Setup optimized CG run and validation – The optimized CG is then executed and noted as
tCG. This timing is used to compute how many times the CG will be executed during the actual
benchmarking phase. The number of repetitions is computed as N = (rt/tCG) + 1. Where N is
the number of repetitions, rt is the execution time provided as input parameter by the user. A
validation is performed to make sure that, after all the modifications performed by the user to
improve the performance, the matrix still fulfills the requirements of the benchmark.
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Optimized CG run – Finally, the HPCG is executed and its performance is recorded. This
performance is reported at the end of the execution.

Figure 1: Representation of the V-Cycle multi-grid algorithm implemented in HPCG.

Figure 1 illustrates how the recursive V-Cycle multi-grid algorithm is implemented in the HPCG
benchmark. The idea is to define different levels of the same matrix and move to a lower/coarser
level applying the combination of smoother (ComputeSYMGS), residual computation (ComputeSPMV)
and restriction of residual (ComputeRestriction). The HPCG benchmark implements four of
such coarsening steps and then an interpolation process (also called refinement) restores the finer
grid, going up to the finest level in the V-Cycle (shown on the right side of Figure 1). Each
refinement step is implemented performing two kernels: ComputeProlongation smoothed using
ComputeSYMGS.

2.1 Profiling
To understand the HPCG reference benchmark behaviour, we used the profiling information re-
ported by the application itself complemented with additional custom timers to achieve a finest
breakdown of the execution time. We also used Extrae [24] to obtain an execution trace for a more
advanced analysis using Paraver [25, 26]. Our first study is based on execution with 8 OpenMP
threads of the original HPCG [27] with grid size nx = ny = nz = 128, which correspond to a
problem size of ∼ 1.3 GB of memory per process.

Figure 2: Breakdown of function calls during the conjugate gradient iteration (top) and percentage of their
execution time (bottom) when running the serial reference HPCG benchmark.

Figure 2 (top) shows how calls from different compute kernels are related to each other. Fig-
ure 2 (bottom) reports the percentage of the total execution time spent in each kernel.

In our test, the multi-grid kernel (ComputeMG) consumes ∼ 85% of the execution time per
iteration. It calls multiple functions, including ComputeMG recursively. The remaining ∼ 15% of the
execution time, represented in Figure 2 (bottom) using green-scale, is consumed by ComputeSPMV,
ComputeDotProduct and ComputeWAXPBY.

2.2 OpenMP parallelization
Figure 3 shows a timeline of the different OpenMP parallel regions executed by HPCG, using
8 threads each. On the x-axis we plot the execution time while in the y-axis we display threads
progression. Different colors along the timeline mean different parallel compute, while empty
(white) regions translate directly into the corresponding thread being idle. We observe that most
of the time the OpenMP threads are idle and in our analysis we measured that ∼ 90% of the whole
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execution time the code runs on a single thread. This is because the symmetric Gauss-Seidel,
the most time consuming kernel of the benchmark, is a serial algorithm, therefore no OpenMP
parallelization has been implemented in the reference version of HPCG.

Figure 3: Timeline of the OpenMP parallel regions during the execution of ComputeMG.

3 Suggested improvements
As highlighted in the profiling study, the scalability of the reference OpenMP version is mostly
limited by the serial preconditioning implementation. Parallelizing the preconditioning process
implies a relaxation of the symmetric Gauss-Seidel algorithm that can introduce a penalization
in terms of iterations needed to converge (i.e., trade-off between fewer slower and more faster
iterations). By applying the techniques introduced in this section, we measured between 5%
and 40% more iterations depending on the chosen implemented method and the parameters chosen.
We provide more details about this overhead in the evaluation section (Sections 4.5 and 4.6).

The final benchmark performance, measured as number of floating operations per second, takes
into account the execution time spent on the extra iterations required for convergence, due to the
relaxation of the algorithm. However only the floating point operations of the first 50 iterations
are considered to compute the performance score.

Parallelizing the preconditioner also required the modification of various data structures at
run-time and the management of auxiliary variables. The portion of the runtime spent in such
operations is considered when computing the final benchmark performance. From a productivity
point of view, code changes are confined in 4 files and those increment the total number of lines
by ∼ 2%.

3.1 Multi-color reordering
We start with the parallelization using OpenMP of the symmetric Gauss-Seidel kernel as described
in [10]. The core idea behind this technique is to color each node in the graph in a way that nodes
with the same color do not share edges among them. By doing so, in the preconditioning process
each node needs values only from first nearest neighbors in the graph. As result, nodes with the
same color can be processed in parallel. Figure 4 shows an example of how to color a 2 dimensional
graph with 9 neighbors for each node. The initial graph is colored and then reordered, such that
nodes with the same color have consecutive indexes. In our implementation, we used 8 colors which
is also the smallest number of colors needed for a 27-point 3-dimensional stencil [28].

Figure 4: Example of coloring and reordering of a 2D regular graph with 16 nodes. Nodes not sharing edges can
be colored with the same color and processed in parallel.
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The algorithm we chose for coloring is the greedy coloring described in [11]. The computational
cost of the coloring process using this approach introduces an overhead of ∼1%, therefore negligible
compared to the overall execution time. We are aware that this method may affect badly the cache
data reuse. In fact, as parallel accesses are performed on nodes that are non-contiguously stored,
the coloring process harms locality.

3.2 Multi-block color reordering
The idea behind multi-block color reordering is similar to multi-color reordering but instead of
coloring single nodes we color set of nodes, called blocks. We used the method introduced in [10]
and applied in [7], but using different block geometry and colors. Once the size and geometry of the
block is defined, we treat every block as single node with a connectivity list that can be handled
with the greedy coloring algorithm as mentioned in Section 3.1. After applying this method,
blocks with the same color can be computed in parallel, while nodes within the same block must
be computed in a serial way. Figure 5.A illustrates how the blocking is performed and how the
blocks are colored in a 2D graph with regular nearest neighbors connectivity.

Figure 5: A. Example of multi-block color reordering of a regular 2D graph. B. 3D lattice with BS = 1, C = 2.
C. 3D lattice with BS = 2, C = 2.

This method improves the convergence of the algorithm compared to the simple coloring, as
shown in [5], therefore less iterations are needed in comparison with the multi-color reordering. It
also improves the cache locality with respect to the multi-color reordering since each thread will
access consecutive rows of the matrix.

For the block partitioning, we decided to group nodes into blocks following a 2D slice topology.
BS is the block size, i.e., the thickness of the slice, while C represents the amount of colors. For
exploratory purposes, in this study those parameters are chosen at compilation time, but adapting
the code they can be set also dynamically. The idea is to be able to optimize the amount of colors
and the size of the blocks that better maps to the underlying hardware and therefore provides a
higher performance.

In Figure 5 we show an example using BS = 1 (B) and BS = 2 (C). In both cases the
number of colors is C = 2. Varying these parameters has different effects on the performance:
increasing the number of colors is beneficial for convergence but decreases the parallelism and
imposes constraints on the geometry, because nx mod C should be 0 for keeping all threads busy
all the time. To be noticed that increasing the block size can have both cache benefits and less
OpenMP synchronizations, but it may lead to inefficiencies during the recursion steps, especially
when the lattice size becomes smaller.

3.3 Use of Arm-optimized compiler and libraries
Since 2016, Arm distributes the Arm HPC Compiler [29], an LLVM-based HPC compiler bundled
with at set of high-performance mathematical libraries, called Arm Performance libraries. Banchelli
et al. [30], performed an early evaluation of those tools and they measured significant difference in
performance between GCC and the Arm HPC Compiler. We as well evaluated HPCG with and
without Arm proprietary tools.

Some of the HPCG kernels could be mapped directly to BLAS or LAPACK functions, as for
example the dot-product and the axpy operation. Other kernels can be derived, as e.g., the waxpby
kernel which computes W = aX + bY (W , X and Y are vectors, while a and b are scalar). It is
possible to rewrite the waxpby kernel as a combination of a scalar-product BLAS call that computes
X ′ = aX and then an axpy call for computing W = X ′ + bY .
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All dot product computations performed within the symmetric Gauss-Seidel are also good
candidates for being replaced by library calls. The vectors used for such operations are composed
of the values of the neighbor nodes of a given row and the values of the solution vector for each
of the neighbor nodes of the same row, therefore the number of elements of the vector is at most
27. Unfortunately we verified that the explicit use of math libraries on such small vectors has
no performance benefits on the considered machine unless extra work is done to expose extra
parallelism.

3.4 Vectorization
The symmetric Gauss-Seidel kernel does not take advantage of automatic SIMD vectorization.
Since the floating point operations performed within the kernel consist mainly on a dot prod-
uct where one of the arrays is not contiguous in memory, the compiler does not generate SIMD
instructions.

We introduced a naive SIMD version of the ComputeSPMV and the ComputeSYMGS which uses
NEON [31, 32] without sensible performance improvements. The same version can be used as start-
ing point to test different SIMD extensions such as the Arm Scalable Vector Extension (SVE) [23],
which include gather-load and scatter-store instructions, useful for stencil workloads as the one
presented by the symmetric Gauss-Seidel algorithm.

4 Results and evaluation
The code development performance evaluation shown in Figure 10 has been performed on a dual
socket compute node developed by Atos/BULL for the Mont-Blanc 3 project housing production
silicon Cavium ThunderX2 processors with 24 ARMv8 cores at 2.00 GHz each and 256 GB DDR4
ECC memory.

The scalability study presented in Section 4.8 has been performed on a development cluster
featuring 8 dual-socket nodes equipped with production silicon Cavium ThunderX2 processors with
28 ARMv8 cores at 2.00 GHz each. The nodes are connected using Mellanox Infiniband EDR.

As for the profiling data presented in Section 2.1, unless specified differently, our study is based
on a local problem size nx = ny = nz = 128, which corresponds to ∼ 1.3 GB of memory per
process.

In all OpenMP experiments, we set the environment variable OMP_PROC_BIND to ensure that
the runtime binds threads to cores, resulting in better data locality.

The software stack used for our tests included: RHEL 7.4, GCC 7.1.0, Arm HPC Compiler
18.1, Arm Performance Libraries 18.1, and Open MPI 3.0.0.

4.1 IPC and Memory Intensity
We considered two main metrics: the Instruction per Clock-cycle (IPC) and the Memory Intensity
ratio MI = Imem/Itot, where Imem is the number of instructions accessing the memory and Itot is
the total number of instructions.

Figure 6: Average IPC and MI per active thread of the most relevant HPCG functions. The darker bars show the
metrics for the reference version of the code, while lighter bars show values for the improved versions introduced in
Section 3.

In Figure 6 we show IPC andMI for the most relevant HPCG functions. The darker bars show
the values of IPC and MI for the reference version of the code, while lighter bars show the same
metrics for the improved versions with higher parallelism introduced in Section 3.
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For the reference version, where most of the time only one thread is working, we observe a high
value of IPC for those functions that are serially executed. On the contrary, the memory intensity
MI is lower in the reference version, compared to implementations with higher parallelism. In fact,
while we can assume Imem is approximately constant over different implementations, Itot is bigger
when running with the reference version. Therefore the ratio MI is lower on more serialized code
(reference version in Figure 6).

We can also notice that for both improved versions, Coloring and Blocking, the memory in-
tensity in ComputeSYMGS is higher than the reference. Such observation justified a deeper study of
cache miss-ratio.

4.2 Cache miss-ratio
We define the Cache Miss Ratio as RLi = MLi/A, where MLi is the number of misses in the
cache of level i and A is the total number of accesses to memory of our code (i.e., load+store
instructions). On a complete execution of the reference version RL1 = 7.50% and RL2 = 7.13%,
while Figure 7 reports the RLi ratio for each of the relevant functions. Looking at the values of
RLi for ComputeSYMGS it is clear the negative impact of the coloring techniques, which increases
the miss ratio especially in the L2 caches. On the contrary, the values of RLi for the blocking
implementation of ComputeSYMGS show that our implementation greatly benefits of data locality
within the block.

Figure 7: Average cache miss ratio RLi per active thread of the most relevant HPCG functions. The darker bars
show the values of RLi for the reference version of the code, while lighter bars show RLi values for the improved
versions introduced in Section 3.

Similarly, we studied the Misses Per Kilo-Instruction (MPKI) ratio, defined as MPKILi =
MLi/(I/1000), where I is the total number of instructions executed and MLi is defined as the
number of misses in the cache of level i. On a complete execution of the reference version MPKIL1 =
28.95 and MPKIL2 = 27.50 . In Figure 8 we report MPKI for the most relevant functions for the
reference version and each of the OpenMP implementations evaluated. We can notice that the data
layout introduced in our two implementations penalizes the performance of e.g., ComputeWAXPBY
or ComputeDotProduct.

Figure 8: Average MPKI of the most relevant HPCG functions for L1 and L2 caches. The darker bars show the
values of MPKI for the reference version of the code, while lighter bars show MPKI values for the improved versions
introduced in Section 3.

4.3 Network communications
For analyzing the communication patterns and overheads, we executed the reference version of
HPCG with 8 MPI ranks, nx = ny = nz = 128 and a single OpenMP thread per MPI rank.
Table 1 shows the percentage of execution time spent in each of the MPI calls by each of the MPI
processes (ranks). As expected, the most impacting MPI function is the MPI_Allreduce. Even
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if the impact in a run with 8 MPI processes is only ∼ 1% it is known (see e.g., [13]) that MPI
collective operations become soon a bottleneck at large scale.

Table 1: Percentage of time spent in MPI calls by each MPI rank

Outside MPI MPI_Send MPI_Irecv MPI_Wait MPI_Allreduce

Rank 1 98.68 % 0.31 % 0.06 % 0.06 % 0.86 %
Rank 2 99.14 % 0.21 % 0.06 % 0.06 % 0.50 %
Rank 3 98.76 % 0.27 % 0.06 % 0.09 % 0.80 %
Rank 4 98.90 % 0.23 % 0.06 % 0.06 % 0.72 %
Rank 5 99.33 % 0.27 % 0.06 % 0.07 % 0.24 %
Rank 6 99.17 % 0.18 % 0.06 % 0.06 % 0.50 %
Rank 7 98.96 % 0.25 % 0.06 % 0.09 % 0.62 %
Rank 8 98.75 % 0.24 % 0.06 % 0.08 % 0.85 %

Figure 9 show, for each message size, the percentage of the total exchanged messages in point-
to-point and collective MPI functions and the percentage of cumulated time spent to transmit
messages of that size. As expected, almost 70% of communication time is spent on packages of
8 Bytes, proving that small messages, mostly generated by collective operations, are impacting
negatively on the overall communication time. This test has been performed within a single node,
but the situation is expected to degrade even more when including network stack overheads.

Figure 9: Percentage of number of messages and percentage of MPI communication time (including p2p and
collectives) for each message size.

Table 2 shows a regular connectivity among MPI ranks, however, depending on the topological
map of the 3D data structure on the MPI ranks, each MPI rank need to communicate to its
neighbors a different amount of data, varying from a few tenths of Bytes up to hundreds of MB,
when running with 8 MPI ranks and nx = ny = nz = 128.

Table 2: MPI ranks connectivity: total amount of MB sent.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

Rank 1 0.00 107.89 107.89 1.08 107.89 1.08 1.08 0.01
Rank 2 107.89 0.00 1.08 107.89 1.08 107.89 0.01 1.08
Rank 3 107.89 1.08 0.00 107.89 1.08 0.01 107.89 1.08
Rank 4 1.08 107.89 107.89 0.00 0.01 1.08 1.08 107.89
Rank 5 107.89 1.08 1.08 0.01 0.00 107.89 107.89 1.08
Rank 6 1.08 107.89 0.01 1.08 107.89 0.00 1.08 107.89
Rank 7 1.08 0.01 107.89 1.08 107.89 1.08 0.00 107.89
Rank 8 0.01 1.08 1.08 107.89 1.08 107.89 107.89 0.00

4.4 Vectorization
We evaluated automatic vectorization obtained using GCC (version 7.1.0) and LLVM-based Arm
HPC Compiler (version 18.1). For GCC we used the following flags: -O3 -mcpu=native -ffast-math
-ftree-vectorize -ftree-vectorizer-verbose=0 -fopenmp -std=c++11 -funroll-loops. For
Arm HPC Compiler we used the following flags: -O3 -mcpu=native -ffast-math -fvectorize
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-fopenmp -std=c++11 -ffp-contract=fast. In both cases no vector instructions are generated
in the ComputeMG portion of the code.

As mentioned in Section 3, we implemented a naive version of the HPCG benchmark which uses
Arm NEON instructions to parallelize the sparse matrix vector multiplication and the symmetric
Gauss-Seidel kernels. We observed an increment of the SIMD instructions executed during the
Gauss-Seidel kernel and a moderate increment during the SPMV kernel. In the first case, the
performance was 9% worse than in the reference implementation of the HPCG. In the second
kernel we observed a 7% gain. The final performance was decreased by a 14%. We did not invest
additional time in improving this naive implementation, but we made it part of our code with the
goal of enabling future research focus on Arm Scalable Vector Extensions.

4.5 Multi-coloring evaluation
Figure 10 shows the performance obtained for different OpenMP thread configurations of the
multi-coloring version (green lines) described in Section 3.1 and the multi-block coloring (blue
lines) introduced in Section 3.2. For comparison we report also the performance of the MPI-
only implementation on one socket (black dot) and the OpenMP reference version of the HPCG
benchmark (in red lines) that, as expected, does not show any scalability.

The evaluation presented in the rest of this section is based on executions of HPCG with fixed
grid size of nx = ny = nz = 192, which corresponds to a problem size of ∼ 4.9 GB of memory per
process.

Figure 10: Performance of HPCG multi-block colored version, multi-colored version and reference version

The performance improvement is significant, even if the scalability is far from optimal. The
main issue with the multi-color reordering approach is the resultant low instruction per clock cycle
(IPC). This is the result of two concurrent factors:

1. Due to the computation order imposed by the reordering of the matrix, almost all mem-
ory accesses on the symmetric Gauss-Seidel are to non-contiguous addresses. This impacts
negatively on the cache miss ratio.

2. Due to the higher number of threads accessing the memory, the L2 is more stressed both by
a higher number of requests and a heavier coherency traffic.

Table 3 shows the cache miss ratio in L1 and L2 for a complete execution and for the ComputeMG
function: the L2 cache miss ratio increases from 7.67% of the reference version to 21.23%. Note
that the hardware counter mapped into the PAPI event PAPI_L2_DCM in Cavium ThunderX2
Performance Monitor Unit implementation includes cache refills generated by hardware prefetcher.
This explains why higher cache miss rate in L2 than in L1 is observed.

Since the computation order is modified, the multi-coloring reordering implementation increases
the parallelism. However it requires 20% to 38% more iterations depending on the geometry of the
input-set to achieve the convergence, negatively affecting final overall performance.
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Table 3: Figures of performance and duration for the implementations of HPCG analyzed in this document.

RL1 RL2 MPKIL1 MPKIL2 IPC Time

Reference Overall 7.50% 7.13% 28.95 27.50 1.40 146.12 s
Compute_MG 7.97% 7.67% 34.30 33.01 1.36 814 µs

Coloring Overall 10.44% 16.03% 49.24 75.62 0.72 94.65 s
Compute_MG 12.35% 21.23% 64.64 111.14 0.57 232 µs

Blocking Overall 7.63% 7.06% 35.00 32.38 1.09 75.13 s
Compute_MG 8.16% 7.61% 42.97 40.08 0.98 131 µs

Looking at compiler effects, we observed that the Arm HPC Compiler generates averagely a
faster binary than GCC. Figure 11 shows a timeline of 24 OpenMP threads executing the same
portion of the code (GenerateProblem in pink) for GCC (up) and Arm HPC Compiler (down).
Because the time scale used in the Figure is identical, it is clearly visible that GCC generates code
∼ 6× slower compared to Arm HPC Compiler. It is clearly visible threads unbalance in the GCC
version. This unbalance was also present when using the same OpenMP scheduling policy with
both compilers.

Figure 11: Paraver timeline of the initial section of HPCG. Same time scale.

This behavior is present in all executions so it explains the systematic higher performance of
the Arm HPC Compiler. Proof of this, is the fact that if we consider the performance as in HPCG
v2.4 (i.e., ignoring setup time) GCC and Arm HPC Compiler deliver roughly the same performance
(within 10% fluctuation).

4.6 Multi-block coloring evaluation

Figure 12: Performance of HPCG multi-block colored version for different block sizes (BS) and number of colors
(C). We performed the study for both compilers, Arm HPC Compiler and GCC, but we report here only the figures
of the Arm HPC Compiler as it outperforms GCC by 10− 20%

As described in Section 3.2, we use the parameters BS and C in order to test different block
sizes and color configurations. Figure 12 summarizes various performance obtained combining
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block sizes and number of colors. Considering the size of the grid 192× 192× 192, the amount of
nodes of the graph included in each block is 192× 192× BS. We observed that, while increasing
the block size and the amount of colors led to a less number of iterations to reach convergence, it
also led to poorer performance due to the lower level of exploitable parallelism.

If we analyze the case {BS = 4, C = 8}, the choice of BS = 4 implies nz/BS = 192/4 = 48
blocks in order to be processed using 8 colors. This means that the number of threads working at
the same time in the outer level of recursion is nz/BS/C = 6. Whenever we assign more threads
to this configuration, we will have unused resources, leading to suboptimal performance. This
explains the light-blue bars in Figure 12. On the other hand, a small block size and small amount
of color led to a higher number of iterations performed, thus penalizing the final performance.
We implemented therefore what we called dynamic slicing, i.e., the possibility of computing and
configuring BS and C at runtime with the goal of maximizing the parallelism each time we change
the refinement of the grid. We verified that this approach unlocks enough compute parallelism
without affecting too much the number of iterations needed to converge. Our tests shown only
10% more iterations than the reference execution. As observed in the multi-color reordered version,
the Arm HPC Compiler generates a faster binary than GCC in the case of multi-block coloring as
well.

Figure 10 (blue lines) show the performance of the multi-block coloring method that improves
the one of multi-coloring by 2.5× and the reference versions by 9.5×. For comparison we also report
the performance of the MPI-only version of HPCG (black line) when solving the same problem size
on a single socket production node with 24 cores. We can observe that the multi-block coloring
implementation can reach the performance obtained with a pure MPI implementation.

We analyzed the reasons of potential performance degradation in our implementation:
Setup time – The HPCG performance is computed as:

GFLOPS =
OPFP

Tbench +
Topt + Tsetup

10
NCG

where Tbench is the execution time of the benchmark phase, Topt is the time spent in optimizing
the data structures, Tsetup is the time spent in initializing the data structures, NCG is the amount
of CG sets executed within the benchmark phase and OPFP are the floating point operations
performed within the benchmark phase. We organize our tests such that each MPI process of the
MPI-only version handles the same amount of memory as each OpenMP thread (i.e., we change nx,
ny, nz of the OpenMP runs in order to match the amount of memory used by the correspondent
MPI-only case). As consequence, each MPI process must initialize a chunk of memory that is 1/np
of the total memory. On the contrary, the process handling the OpenMP execution have to allocate
the total amount of memory. We noticed that Tsetup does not scale linearly when increasing the
input size, therefore, OpenMP versions have an extra overhead.

IPC during computation phases – We observed a systematic lower IPC during computation
phases on our OpenMP versions. This could be caused by a better data cache locality on pure
MPI implementations since each process executes serial code on its own local grid. In all OpenMP
versions, each thread executes serial code on different parts of the grid, thus affecting cache locality.
Unfortunately we can not verify this hypothesis because we have currently no direct access to uncore
hardware counters, including last level cache information.

Number of instructions per thread – We observed that, in terms of instructions, all OpenMP
versions execute more instructions than the pure MPI implementation. This is due to a non-linear
scaling of the number of instructions executed per thread when increasing the number of OpenMP
threads.

Iterations per CG set – We performed a relaxation of the symmetric Gauss-Seidel algorithm on
the OpenMP versions. This relaxation generates a penalization in terms of iterations executed per
CG set, negatively affecting the final performance.

This last method also implies better data locality, that translates into a better use of both
levels of caches, as shown in the last two lines of Table 3 and in Figures 7 and 8.

Figure 13 compares the memory bandwidth reported by the HPCG benchmark (blue line) with
BS = 1 and C = 8 and the one achieved by the STREAM benchmark (gray lines). On HPCG,
the bandwidth increases till reaching 24 cores. That is not the case of STREAM, where the
performance of 8 cores is similar to 24 cores. Therefore, the poor scalability of our implementation
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is not a lack of memory bandwidth, but a lack of parallelism due to the size of the blocks (higher
size implies less blocks within the same color) and the amount of colors (higher number of colors
implies blocks need to be split between more groups, therefore, less blocks per color), and the fact
that the amount of parallelism is proportional to the amount of blocks within the same color.

Figure 13: Memory bandwidth achieved with the HPCG with nx = ny = nz = 192 and the STREAM benchmarks

4.7 Arm-optimized mathematical libraries evaluation
We implemented a version of the ComputeDotProduct that uses the BLAS function ddot. Figure 14
shows the performance obtained by using the Arm Performance Libraries as a BLAS implementa-
tion (green lines) compared to the reference version without mathematical libraries (orange lines).
In both cases OpenMP is used to parallelize the kernel. We can observe that the use of the Arm
Performance Libraries almost always improves the performance. Also, combining GCC with the
Arm Performance Libraries still adds some benefit (dashed green line).

Even if the benefit of using the Arm Performance Libraries are sensible, it is important to
note that the execution time spent on the ComputeDotProduct kernel represents less than a 5%
of the total benchmark time. The overall gain using them is performance wise almost negligible
at this stage. There is still a potential performance gain if computing the dot products within
the symmetric Gauss-Seidel using Arm-optimized libraries. The only difficulty for achieving that
is the need of remapping the arrays on contiguous memory addresses. Such operation could have
noticeable additional overheads. This step is still under investigation.

Figure 14: Performance of the ComputeDotProduct kernel using the Arm Performance Libraries compared with
the reference version that does not make use of any math library.
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4.8 Performance at scale
We evaluate scalability of HPCG up to 8 dual socket Cavium ThunderX2 nodes. Each node is
equipped with dual socket Cavium ThunderX2 with 56 ARMv8 cores and 256 GB of memory in
total. Infiniband EDR is provided by Mellanox MT4115 ConnectX-4 adapters. The cluster is
deployed using OpenHPC 1.3 [33] and it runs Red Hat Enterprise Linux 7.4. The relevant software
stack used for this work is composed by the following packages and libraries: GNU 7.1.0, Arm
HPC Compiler 18.2.0, Mellanox OFED 4.3-1.0.1.0, UCX 1.3 [34], Open MPI 3.0.1 built with UCX
support and Slurm 17.02.9.

Figure 15: HPCG performance of the best hybrid MPI+OpenMP code implementation (multi-block color reorder-
ing) and MPI-only up to 8 dual-socket nodes.

Figure 15 compares the MPI only version with two hybrid MPI+OpenMP executions modes:
8 MPI processes per node each using 7 OpenMP threads (red bars) and 4 MPI processes per node
each using 14 OpenMP threads (yellow bars). Block-coloring parameters BS and C are dynam-
ically chosen by the application at run-time based on problem size and executions modes. The
problem size, defined by grid dimensions {nx, ny, nz}, have been chosen to operate in weak scaling
regime, allocating the same amount of memory at node level for all executions (∼ 126.98 GB). All
tests exploit appropriate process placement and thread binding via Open MPI (via the “–map-by”
option). UCX is explicitly used as point-to-point management layer (via the “-mca pml ucx”
option).

This preliminary study shows that the MPI+OpenMP implementation with block-coloring can,
in certain conditions and for certain local problem sizes, outperform the MPI-only version.

5 Conclusions
In this paper we introduce a profiling of the HPCG benchmark and we analyze different strategies
to parallelize the symmetric Gauss-Seidel preconditioner from the HPCG benchmark. We focus on
shared memory first and we relay on OpenMP as de-facto standard for express parallelism within
a HPC node. Focusing on the parallelization of the Gauss-Seidel, we implemented two approaches:
multi-color reordering and multi-block color reordering.

The work presented in this paper is a preliminary set of activities which will be used as a starting
point for further improvements. As the multi-block coloring approach has been proved to deliver
higher performance, we will focus on optimizing the block layout in that implementation. Also,
we will further explore vectorization and new data access patterns. All of these are extremely
important to further improve the performance of the HPCG benchmark. Optimized memory
access pattern could improve the effective memory bandwidth by making better use of the memory
hierarchy, manual vectorization could help in increasing the floating point operation per cycle
ratio whereas different block layouts could impact on the amount of parallelism exposed within
the Gauss-Seidel kernel.

We evaluated our parallelization techniques on Cavium ThunderX2 systems, state-of-the-art
ARMv8 architecture targeting HPC. It is important to point out that our main objective it is not
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to optimize the HPCG benchmark for a specific processor technology but to implement a base
version which takes advantage of shared memory techniques. This version that can be used as
starting point for specific optimizations based on various micro-architecture, including different
Arm-based processors. Concerning the Arm ecosystem, it is encouraging to note that, on average
on this particular benchmark, Arm HPC Compiler delivers better performance than GCC.

As it has been observed in Section 4.6, a static block layout evaluated in our multi-block coloring
implementation does not always express a high degree of parallelism, which directly translates into
not fully utilizing all the resources available on the processor for all refinement stages of the multi-
grid. We notice in fact that, when increasing the block size, the performance drops. Therefore, a
new approach to dynamically vary the geometry of the blocks has been implemented, evaluated
and proved capable of reaching and, in some cases, even outperforming the pure-MPI performance.
Comparing the memory bandwidth achieved with our implementation and the one measured with
the STREAM benchmark (see Figure 13) we notice that we are using a significant fraction of the
bandwidth, but there is still space for improvement. In view of this, it is not only important to
increase the level of parallelism of the Gauss-Seidel, but also to improve the cache usage and try
to increase the number of floating point operations performed for each memory access.

We noticed that the multi-coloring algorithm significantly degrades the cache hit-ratio. This
is due to the fact that the different nodes of the grid are accessed using a pseudo sparse pattern
decreasing the locality of the data structures used on the HPCG benchmark. This effect appears
mitigated on the multi-block coloring approach since each block is processed sequentially: within
a block the access to the data is identical to the reference version of the benchmark.

The optimizations flags used during the experiments, even if coherently chosen during the
benchmark campaign, could be sub-optimal preventing to achieve the best performance on Cavium
ThunderX2. For this reason, further close discussion with the SoC provider and the developers
of the compilers tested in this work will continue. The same applies for optimized mathematical
libraries: we measured that using the Arm Performance Libraries can deliver a better performance,
but probably improving basic sparse matrix operations (e.g., SParse-Matrix Vector (SPMV)) will
bring even a higher benefit.

As a final note, the authors of this paper release open-source the improved version of the
HPCG benchmark evaluated in this paper in order to establish a baseline version that can be
used for future algorithmic improvements, low-level fine-grain optimizations and also reproducible
performance comparisons between Arm and non-Arm platforms. The code is available at https:
//gitlab.com/arm-hpc.
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