5 research outputs found

    High-Order Numerical Integration on Domains Bounded by Intersecting Level Sets

    Full text link
    We present a high-order method that provides numerical integration on volumes, surfaces, and lines defined implicitly by two smooth intersecting level sets. To approximate the integrals, the method maps quadrature rules defined on hypercubes to the curved domains of the integrals. This enables the numerical integration of a wide range of integrands since integration on hypercubes is a well known problem. The mappings are constructed by treating the isocontours of the level sets as graphs of height functions. Numerical experiments with smooth integrands indicate a high-order of convergence for transformed Gauss quadrature rules on domains defined by polynomial, rational, and trigonometric level sets. We show that the approach we have used can be combined readily with adaptive quadrature methods. Moreover, we apply the approach to numerically integrate on difficult geometries without requiring a low-order fallback method

    Numerical superposition of Gaussian beams over propagating domain for high frequency waves and high-order invariant-preserving methods for dispersive waves

    Get PDF
    This thesis is devoted to efficient numerical methods and their implementations for two classes of wave equations. The first class is linear wave equations in very high frequency regime, for which one has to use some asymptotic approach to address the computational challenges. We focus on the use of the Gaussian beam superposition to compute the semi--classical limit of the Schr {o}dinger equation. The second class is dispersive wave equations arising in modeling water waves. For the Whitham equation, so-called the Burgers--Poisson equation, we design, analyze, and implement local discontinuous Galerkin methods to compute the energy conservative solutions with high-order of accuracy. Our Gaussian beam (GB) approach is based on the domain-propagation GB superposition algorithm introduced by Liu and Ralston [Multiscale Model. Simul., 8(2), 2010, 622--644]. We construct an efficient numerical realization of the domain propagation-based Gaussian beam superposition for solving the Schr odinger equation. The method consists of several significant steps: a semi-Lagrangian tracking of the Hamiltonian trajectory using the level set representation, a fast search algorithm for the effective indices associated with the non-trivial grid points that contribute to the approximation, an accurate approximation of the delta function evaluated on the Hamiltonian manifold, as well as efficient computation of Gaussian beam components over the effective grid points. Numerical examples in one and two dimensions demonstrate the efficiency and accuracy of the proposed algorithms. For the Burgers--Poisson equation, we design, analyze and test a class of local discontinuous Galerkin methods. This model, proposed by Whitham [Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974] as a simplified model for shallow water waves, admits conservation of both momentum and energy as two invariants. The proposed numerical method is high order accurate and preserves two invariants, hence producing solutions with satisfying long time behavior. The L2L^2-stability of the scheme for general solutions is a consequence of the energy preserving property. The optimal order of accuracy for polynomial elements of even degree is proven. A series of numerical tests is provided to illustrate both accuracy and capability of the method

    Semiclassical methods for high frequency wave propagation in periodic media

    Get PDF
    We will study high-frequency wave propagation in periodic media. A typical example is given by the Schr\"odinger equation in the semiclassical regime with a highly oscillatory periodic potential and external smooth potential. This problem presents a numerical challenge when in the semiclassical regime. For example, conventional methods such as finite differences and spectral methods leads to high numerical cost, especially in higher dimensions. For this reason, asymptotic methods like the frozen Gaussian approximation (FGA) was developed to provide an efficient computational tool. Prior to the development of the FGA, the geometric optics and Gaussian beam methods provided an alternative asymptotic approach to solving the Schr\"odinger equation efficiently. Unlike the geometric optics and Gaussian beam methods, the FGA does not lose accuracy due to caustics or beam spreading.In this thesis, we will briefly review the geometric optics, Gaussian beam, and FGA methods. The mathematical techniques used by these methods will aid us in formulating the Bloch-decomposition based FGA. The Bloch-decomposition FGA generalizes the FGA to wave propagation in periodic media. We will establish the convergence of the Bloch-decomposition based FGA to the true solution for Schr\"odinger equation and develop a gauge-invariant algorithm for the Bloch-decomposition based FGA. This algorithm will avoid the numerical difficulty of computing the gauge-dependent Berry phase. We will show the numerical performance of our algorithm by several one-dimensional examples.Lastly, we will propose a time-splitting FGA-based artificial boundary conditions for solving the one-dimensional nonlinear Schr\"odinger equation (NLS) on an unbounded domain. The NLS will be split into two parts, the linear and nonlinear parts. For the linear part we will use the following absorbing boundary strategy: eliminate Gaussian functions whose centers are too distant to a fixed domain
    corecore