560,217 research outputs found

    Comparative analysis of spatial and transform domain methods for meningioma subtype classification

    Get PDF
    Pattern recognition in histopathological image analysis requires new techniques and methods. Various techniques have been presented and some state of the art techniques have been applied to complex textural data in histological images. In this paper, we compare the novel Adaptive Discriminant Wavelet Packet Transform (ADWPT) with a few prominent techniques in texture analysis namely Local Binary Patterns (LBP), Grey Level Co-occurrence Matrices (GLCMs) and Gabor Transforms. We show that ADWPT is a better technique for Meningioma subtype classification and produces classification accuracies of as high as 90%

    A Model of an Oscillatory Neural Network with Multilevel Neurons for Pattern Recognition and Computing

    Full text link
    The current study uses a novel method of multilevel neurons and high order synchronization effects described by a family of special metrics, for pattern recognition in an oscillatory neural network (ONN). The output oscillator (neuron) of the network has multilevel variations in its synchronization value with the reference oscillator, and allows classification of an input pattern into a set of classes. The ONN model is implemented on thermally-coupled vanadium dioxide oscillators. The ONN is trained by the simulated annealing algorithm for selection of the network parameters. The results demonstrate that ONN is capable of classifying 512 visual patterns (as a cell array 3 * 3, distributed by symmetry into 102 classes) into a set of classes with a maximum number of elements up to fourteen. The classification capability of the network depends on the interior noise level and synchronization effectiveness parameter. The model allows for designing multilevel output cascades of neural networks with high net data throughput. The presented method can be applied in ONNs with various coupling mechanisms and oscillator topology.Comment: 26 pages, 24 figure

    Pattern mining approaches used in sensor-based biometric recognition: a review

    Get PDF
    Sensing technologies place significant interest in the use of biometrics for the recognition and assessment of individuals. Pattern mining techniques have established a critical step in the progress of sensor-based biometric systems that are capable of perceiving, recognizing and computing sensor data, being a technology that searches for the high-level information about pattern recognition from low-level sensor readings in order to construct an artificial substitute for human recognition. The design of a successful sensor-based biometric recognition system needs to pay attention to the different issues involved in processing variable data being - acquisition of biometric data from a sensor, data pre-processing, feature extraction, recognition and/or classification, clustering and validation. A significant number of approaches from image processing, pattern identification and machine learning have been used to process sensor data. This paper aims to deliver a state-of-the-art summary and present strategies for utilizing the broadly utilized pattern mining methods in order to identify the challenges as well as future research directions of sensor-based biometric systems

    The Relationship between Anthropometric Variables and Features of Electromyography Signal for Human-Computer Interface

    No full text
    http://doi.org/10.4018/978-1-4666-6090-8 ISBN 13 : 9781466660908 EISBN13: 9781466660915International audienceMuscle-computer interfaces (MCIs) based on surface electromyography (EMG) pattern recognition have been developed based on two consecutive components: feature extraction and classification algorithms. Many features and classifiers are proposed and evaluated, which yield the high classification accuracy and the high number of discriminated motions under a single-session experimental condition. However, there are many limitations to use MCIs in the real-world contexts, such as the robustness over time, noise, or low-level EMG activities. Although the selection of the suitable robust features can solve such problems, EMG pattern recognition has to design and train for a particular individual user to reach high accuracy. Due to different body compositions across users, a feasibility to use anthropometric variables to calibrate EMG recognition system automatically/semi-automatically is proposed. This chapter presents the relationships between robust features extracted from actions associated with surface EMG signals and twelve related anthropometric variables. The strong and significant associations presented in this chapter could benefit a further design of the MCIs based on EMG pattern recognition

    Human inspired pattern recognition via local invariant features

    Get PDF
    Vision is increasingly becoming a vital element in the manufacturing industry. As complex as it already is, vision is becoming even more difficult to implement in a pattern recognition environment as it converges toward the level of what humans visualize. Relevant brain work technologies are allowing vision systems to add capability and tasks that were long reserved for humans. The ability to recognize patterns like humans do is a good goal in terms of performance metrics for manufacturing activities. To achieve this goal, we created a neural network that achieves pattern recognition analogous to the human visual cortex using high quality keypoints by optimizing the scale space and pairing keypoints with edges as input into the model. This research uses the Taguchi Design of Experiments approach to find optimal values for the SIFT parameters with respect to finding correct matches between images that vary in rotation and scale. The approach used the Taguchi L18 matrix to determine the optimal parameter set. The performance obtained from SIFT using the optimal solution was compared with the performance from the original SIFT algorithm parameters. It is shown that correct matches between an original image and a scaled, rotated, or scaled and rotated version of that image improves by 17% using the optimal values of the SIFT. A human inspired approach was used to create a CMAC based neural network capable of pattern recognition. A comparison of 3 object, 30 object, and 50 object scenes were examined using edge and optimized SIFT based features as inputs and produced extensible results from 3 to 50 objects based on classification performance. The classification results prove that we achieve a high level of pattern recognition that ranged from 96.1% to 100% for objects under consideration. The result is a pattern recognition model capable of locally based classification based on invariant information without the need for sets of information that include input sensory data that is not necessarily invariant (background data, raw pixel data, viewpoint angles) that global models rely on in pattern recognition

    Multi-class Multi-label Classification and Detection of Lumbar Intervertebral Disc Degeneration MR Images using Decision Tree Classifiers

    Get PDF
    Evidence-based medicine decision-making based on computer-aided methods is a new direction in modernhealthcare. Data Mining Techniques in Computer-Aided Diagnosis (CAD) are powerful and widely used toolsfor efficient and automated classification, retrieval, and pattern recognition of medical images. They becomehighly desirable for the healthcare providers because of the massive and increasing volume of intervertebral discdegeneration images. A fast and efficient classification and retrieval system using query images with high degreeof accuracy is vital. The method proposed in this paper for automatic detection and classification of lumbarintervertebral disc degeneration MRI-T2 images makes use of texture-based pattern recognition in data mining.A dataset of 181segmented ROIs, corresponding to 89 normal and 92 degenerated (narrowed) discs at differentvertebral level, was analyzed and textural features (contrast, entropy, and energy) were extracted from each disc-ROI. The extracted features were employed in the design of a pattern recognition system using C4.5 decisiontree classifier. The system achieved a classification accuracy of 93.33% in designing a Multi-class Multi-labelclassification system based on the affected disc position. This work combined with its higher accuracy isconsidered a valuable knowledge for orthopedists in their diagnosis of lumbar intervertebral disc degeneration inT2-weighted Magnetic Resonance sagittal Images and for automated annotation, archiving, and retrieval of theseimages for later on usage.Keywords: Data Mining, Image Processing, Lumbar Intervertebral Disc Degeneration, MRI-T2, Decision Trees,Multi-class Multi-label Classification

    Feature fusion, feature selection and local n-ary patterns for object recognition and image classification

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Object recognition is one of the most fundamental topics in computer vision. During past years, it has been the interest for both academies working in computer science and professionals working in the information technology (IT) industry. The popularity of object recognition has been proven by its motivation of sophisticated theories in science and wide spread applications in the industry. Nowadays, with more powerful machine learning tools (both hardware and software) and the huge amount of information (data) readily available, higher expectations are imposed on object recognition. At its early stage in the 1990s, the task of object recognition can be as simple as to differentiate between object of interest and non-object of interest from a single still image. Currently, the task of object recognition may as well includes the segmentation and labeling of different image regions (i.e., to assign each segmented image region a meaningful label based on objects appear in those regions), and then using computer programs to infer the scene of the overall image based on those segmented regions. The original two-class classification problem is now getting more complex as it now evolves toward a multi-class classification problem. In this thesis, contributions on object recognition are made in two aspects. These are, improvements using feature fusion and improvements using feature selection. Three examples are given in this thesis to illustrate three different feature fusion methods, the descriptor concatenation (the low-level fusion), the confidence value escalation (the mid-level fusion) and the coarse-to-fine framework (the high-level fusion). Two examples are provided for feature selection to demonstrate its ideas, those are, optimal descriptor selection and improved classifier selection. Feature extraction plays a key role in object recognition because it is the first and also the most important step. If we consider the overall object recognition process, machine learning tools are to serve the purpose of finding distinctive features from the visual data. Given distinctive features, object recognition is readily available (e.g., a simple threshold function can be used to classify feature descriptors). The proposal of Local N-ary Pattern (LNP) texture features contributes to both feature extraction and texture classification. The distinctive LNP feature generalizes the texture feature extraction process and improves texture classification. Concretely, the local binary pattern (LBP) is the special case of LNP with n = 2 and the texture spectrum is the special case of LNP with n = 3. The proposed LNP representation has been proven to outperform the popular LBP and one of the LBP’s most successful extension - local ternary pattern (LTP) for texture classification
    corecore