312 research outputs found

    High Isolation Single-Pole Four-Throw RF MEMS Switch Based on Series-Shunt Configuration

    Get PDF
    This paper presents a novel design of single-pole four-throw (SP4T) RF-MEMS switch employing both capacitive and ohmic switches. It is designed on high-resistivity silicon substrate and has a compact area of 1.06 mm2. The series or ohmic switches have been designed to provide low insertion loss with good ohmic contact. The pull-in voltage for ohmic switches is calculated to be 7.19 V. Shunt or capacitive switches have been used in each port to improve the isolation for higher frequencies. The proposed SP4T switch provides excellent RF performances with isolation better than 70.64 dB and insertion loss less than 0.72 dB for X-band between the input port and each output port

    Good performance RF-MEMS SP2T switches in CPW configuration for space applications.

    Get PDF
    Coplanar (CPW) waveguide based on cantilever or clamped-clamped switches have been developed for use in space applications. All the devices are manufactured on high-resistive silicon using surface micro-machining technology. The SP2T switches provide very good performance in terms of insertion and return loss and isolation over a wide frequency band. These switches are intended to be used as building blocks for large order switching matrices for satellite applications. Full wave simulations and measured RF performances are shown to be in very good agreement, showing high performance for all SPST typologies. Depending on the specific design, insertion loss -20dB, return loss between -5dB and -15dB and isolation between -20dB and -23dB has been obtained in the 0-40 GHz frequency band. In this paper implementation of HFSS (High Frequency Structure Simulator) is done to take desired results

    W band 2 bit MEMS based digital phase shifter

    Get PDF

    A COMPREHENSIVE OVERVIEW OF RECENT DEVELOPMENTS IN RF-MEMS TECHNOLOGY-BASED HIGH-PERFORMANCE PASSIVE COMPONENTS FOR APPLICATIONS IN THE 5G AND FUTURE TELECOMMUNICATIONS SCENARIOS

    Get PDF
    The goal of this work is to provide an overview about the current development of radio-frequency microelectromechanical systems technology, with special attention towards those passive components bearing significant application potential in the currently developing 5G paradigm. Due to the required capabilities of such communication standard in terms of high data rates, extended allocated spectrum, use of massive MIMO (Multiple-Input-Multiple-Output) systems, beam steering and beam forming, the focus will be on devices like switches, phase shifters, attenuators, filters, and their packaging/integration. For each of the previous topics, several valuable contributions appeared in the last decade, underlining the improvements produced in the state of the art and the chance for RF-MEMS technology to play a prominent role in the actual implementation of the 5G infrastructure

    Low Loss RF MEMS Phase Shifters for Satellite Communication Systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76391/1/AIAA-2002-1895-175.pd

    Design and fabrication of a single membrane push-pull SPDT RF MEMS switch operated by electromagnetic actuation and electrostatic hold

    Full text link
    In this paper, we report a new push-pull-type SPDT (single pole double throw) switch actuated by the combination of electromagnetic and electrostatic forces for low power and low voltage operation. The switch is initially actuated by large electromagnetic force to change its state and is held to maintain its state by applying electrostatic force to reduce static power consumption. The electromagnetic force can be easily generated at low voltage. The maximum actuation voltage is below 4.3 V and the required energy is 15.4 µJ per switching. It achieves signal isolation of −54 dB and insertion loss of −0.16 dB at 2 GHz, respectively. For 20 GHz operation, isolation and insertion loss were measured as −36 dB and −0.52 dB, respectively. The proposed SPDT switch combines two switching elements in a single structure, simplifying the overall structure and control signals and eliminating mismatches between the two switching elements. The dimension of the switch has been optimized using FEM simulation and analytical calculations. We have successfully carried out a lifetime test over more than 166 million cycles with the maximum actuation voltage below 4.3 V.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85424/1/jmm10_3_035028.pd

    Liquid Metal-Enabled Filtering Switches and Switchplexers

    Get PDF
    The via-pad-slot (VPS) structure, as the switchable element, has been used to demonstrate a single-pole-triple-throw (SPTT) filtering switch and a switchplexer. The VPS can be flexibily switched using liquid metal (LM) or high dielectric constant materials to either cover or uncover the slot. Since the LM only moves on the surface of the VPS and the substrate-integrated waveguide (SIW), the implementation and actuation of the LM is simple and does not cause excessive loss on the device. In the switchplexer design, all channels can be switched on and off to form filters or multiplexers of various channel combinations. Additional transmission zeros (TZs) can be generated by the loaded, partially switched-off channel. The generation of the TZs was discussed and analyzed using coupling matrix approach. The demonstrated &lt;italic&gt;X&lt;/italic&gt;-band (9.56&amp;#x2013;10.44 GHz) cross-shaped SPTT fifth-order filtering switch exhibits a suppression level of better than 40 dB at 8 and 12 GHz, an insertion loss (IL) of 1.55 dB at 10 GHz, and an isolation level of 58 dB at 10 GHz. The &lt;italic&gt;X&lt;/italic&gt;-band switchplexer operates at three frequency bands, e.g., 11.08&amp;#x2013;11.55 GHz, 10.61&amp;#x2013;10.99 GHz, and 9.76&amp;#x2013;10.33 GHz. The LM-enabled VPS-based switchable element can be integrated with other multifunctional circuits and systems for channel control and reconfiguration.</p

    RF MEMS ohmic switches for matrix configurations

    Get PDF
    Two different topologies of radio frequency micro-electro-mechanical system (RF MEMS) series ohmic switches (cantilever and clamped–clamped beams) in coplanar waveguide (CPW) configuration have been characterized by means of DC, environmental, and RF measurements. In particular, on-wafer checks have been followed by RF test after vibration, thermal shocks, and temperature cycles. The devices have been manufactured on high resistivity silicon substrates, as building blocks to be implemented in different single-pole 4-throw (SP4 T), double-pole double-throw (DPDT) configurations, and then integrated in Low Temperature Co-fired Ceramics (LTCC) technology for the realization of large-order Clos 3D networks

    Reconfigurable RF Front End Components for Multi-Radio Platform Applications

    Get PDF
    The multi-service requirements of the 3G and 4G communication systems, and their backward compatibility requirements, create challenges for the antenna and RF front-end designs with multi-band and wide-band techniques. These challenges include: multiple filters, which are lossy, bulky, and expensive, are needed in the system; device board size limitation and the associated isolation problems caused by the limited space and crowd circuits; and the insertion loss issues created by the single-pole-multi-through antenna switch. As will be shown, reconfigurable antennas can perform portions of the filter functions, which can help solve the multiple filters problem. Additionally, reconfigurable RF circuits can decrease the circuit size and output ports, which can help solve board size limitation, and isolation and antenna switch insertion loss issues. To validate the idea that reconfigurable antennas and reconfigurable RF circuits are a viable option for multi-service communication system, a reconfigurable patch antenna, a reconfigurable monopole antenna, and a reconfigurable power amplifier (PA) have been developed. All designs adapt state-of-the-art techniques. For the reconfigurable antenna designs, an experiment demonstrating its advantages, such as jamming signal resistance, has been performed. Reconfigurable antennas provide a better out-ofoperating- band noise performance than the multi-band antennas design, decreasing the need for filters in the system. A full investigation of reconfigurable antennas, including the single service reconfigurable antenna, the mixed signal service reconfigurable antenna, and the multi-band reconfigurable antenna, has been completed. The design challenges, which include switches investigation, switches integration, and service grouping techniques, have been discussed. In the reconfigurable PA portion, a reconfigurable PA structure has first been demonstrated, and includes a reconfigurable output matching network (MN) and a reconfigurable die design. To validate the proposed reconfigurable PA structure, a reconfigurable PA for a 3G cell phone system has been designed with a multi-chip module technique. The reconfigurable PA structure can significantly decrease the real-estate, cost, and complexity of the PA design. Further, by decreasing the number of output ports, the number of poles for the antenna switch will be decreased as well, leading to an insertion loss decrease

    RF-MEMS Technology for High-Performance Passives (Second Edition) - 5G applications and prospects for 6G

    Get PDF
    The focus of this book develops around hardware, and in particular on low-complexity components for Radio Frequency (RF) applications. To this end, microsystem (MEMS) technology for RF passive components, known as RF-MEMS, is employed, discussing its potentialities in the application frame of 5G. The approach adopted is practical, and a significant part of the content can be directly used by scientists involved in the field, to put their hand on actual design, optimization and development of innovative RF passive components in MEMS technology for 5G and beyond applications. This update (which includes a review of the main approaches to the modelling and simulations of MEMS and RF-MEMS devices) is timely and will find a wider readership as it crosses into the translational aspects of applied research in the subject. Key features • With over 50 pages of new content, the book will be 1/3 larger than the 1st edition. • New chapter on simulation and modelling techniques. • Practical approach to the design and development of RF-MEMS design concepts for 5G and upcoming 6G. • Includes case studies. • Video figures. • Includes a review of the business landscape
    corecore