13,668 research outputs found

    Name Disambiguation from link data in a collaboration graph using temporal and topological features

    Get PDF
    In a social community, multiple persons may share the same name, phone number or some other identifying attributes. This, along with other phenomena, such as name abbreviation, name misspelling, and human error leads to erroneous aggregation of records of multiple persons under a single reference. Such mistakes affect the performance of document retrieval, web search, database integration, and more importantly, improper attribution of credit (or blame). The task of entity disambiguation partitions the records belonging to multiple persons with the objective that each decomposed partition is composed of records of a unique person. Existing solutions to this task use either biographical attributes, or auxiliary features that are collected from external sources, such as Wikipedia. However, for many scenarios, such auxiliary features are not available, or they are costly to obtain. Besides, the attempt of collecting biographical or external data sustains the risk of privacy violation. In this work, we propose a method for solving entity disambiguation task from link information obtained from a collaboration network. Our method is non-intrusive of privacy as it uses only the time-stamped graph topology of an anonymized network. Experimental results on two real-life academic collaboration networks show that the proposed method has satisfactory performance.Comment: The short version of this paper has been accepted to ASONAM 201

    The Child is Father of the Man: Foresee the Success at the Early Stage

    Full text link
    Understanding the dynamic mechanisms that drive the high-impact scientific work (e.g., research papers, patents) is a long-debated research topic and has many important implications, ranging from personal career development and recruitment search, to the jurisdiction of research resources. Recent advances in characterizing and modeling scientific success have made it possible to forecast the long-term impact of scientific work, where data mining techniques, supervised learning in particular, play an essential role. Despite much progress, several key algorithmic challenges in relation to predicting long-term scientific impact have largely remained open. In this paper, we propose a joint predictive model to forecast the long-term scientific impact at the early stage, which simultaneously addresses a number of these open challenges, including the scholarly feature design, the non-linearity, the domain-heterogeneity and dynamics. In particular, we formulate it as a regularized optimization problem and propose effective and scalable algorithms to solve it. We perform extensive empirical evaluations on large, real scholarly data sets to validate the effectiveness and the efficiency of our method.Comment: Correct some typos in our KDD pape

    Longitudinal Citation Prediction using Temporal Graph Neural Networks

    Get PDF
    Citation count prediction is the task of predicting the number of citations a paper has gained after a period of time. Prior work viewed this as a static prediction task. As papers and their citations evolve over time, considering the dynamics of the number of citations a paper will receive would seem logical. Here, we introduce the task of sequence citation prediction, where the goal is to accurately predict the trajectory of the number of citations a scholarly work receives over time. We propose to view papers as a structured network of citations, allowing us to use topological information as a learning signal. Additionally, we learn how this dynamic citation network changes over time and the impact of paper meta-data such as authors, venues and abstracts. To approach the introduced task, we derive a dynamic citation network from Semantic Scholar which spans over 42 years. We present a model which exploits topological and temporal information using graph convolution networks paired with sequence prediction, and compare it against multiple baselines, testing the importance of topological and temporal information and analyzing model performance. Our experiments show that leveraging both the temporal and topological information greatly increases the performance of predicting citation counts over time
    corecore