3,106 research outputs found

    High Dimensional Random Walks and Colorful Expansion

    Get PDF
    Random walks on bounded degree expander graphs have numerous applications, both in theoretical and practical computational problems. A key property of these walks is that they converge rapidly to their stationary distribution. In this work we {\em define high order random walks}: These are generalizations of random walks on graphs to high dimensional simplicial complexes, which are the high dimensional analogues of graphs. A simplicial complex of dimension dd has vertices, edges, triangles, pyramids, up to dd-dimensional cells. For any 0≤i<d0 \leq i < d, a high order random walk on dimension ii moves between neighboring ii-faces (e.g., edges) of the complex, where two ii-faces are considered neighbors if they share a common (i+1)(i+1)-face (e.g., a triangle). The case of i=0i=0 recovers the well studied random walk on graphs. We provide a {\em local-to-global criterion} on a complex which implies {\em rapid convergence of all high order random walks} on it. Specifically, we prove that if the 11-dimensional skeletons of all the links of a complex are spectral expanders, then for {\em all} 0≤i<d0 \le i < d the high order random walk on dimension ii converges rapidly to its stationary distribution. We derive our result through a new notion of high dimensional combinatorial expansion of complexes which we term {\em colorful expansion}. This notion is a natural generalization of combinatorial expansion of graphs and is strongly related to the convergence rate of the high order random walks. We further show an explicit family of {\em bounded degree} complexes which satisfy this criterion. Specifically, we show that Ramanujan complexes meet this criterion, and thus form an explicit family of bounded degree high dimensional simplicial complexes in which all of the high order random walks converge rapidly to their stationary distribution.Comment: 27 page

    Testing Odd Direct Sums Using High Dimensional Expanders

    Get PDF
    In this work, using methods from high dimensional expansion, we show that the property of k-direct-sum is testable for odd values of k . Previous work of [Kaufman and Lubotzky, 2014] could inherently deal only with the case that k is even, using a reduction to linearity testing. Interestingly, our work is the first to combine the topological notion of high dimensional expansion (called co-systolic expansion) with the combinatorial/spectral notion of high dimensional expansion (called colorful expansion) to obtain the result. The classical k-direct-sum problem applies to the complete complex; Namely it considers a function defined over all k-subsets of some n sized universe. Our result here applies to any collection of k-subsets of an n-universe, assuming this collection of subsets forms a high dimensional expander

    High-Dimensional Expanders from Expanders

    Get PDF
    We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new constructions, as well as a natural probabilistic model to sample constant degree high-dimensional expanders. In particular, we show that given an expander graph G, adding self loops to G and taking the tensor product of the modified graph with a high-dimensional expander produces a new high-dimensional expander. Our proof of rapid mixing of high order random walks is based on the decomposable Markov chains framework introduced by [Jerrum et al., 2004]

    Testing Higher-order Clusterability on graphs

    Full text link
    Analysis of higher-order organizations, usually small connected subgraphs called motifs, is a fundamental task on complex networks. This paper studies a new problem of testing higher-order clusterability: given query access to an undirected graph, can we judge whether this graph can be partitioned into a few clusters of highly-connected motifs? This problem is an extension of the former work proposed by Czumaj et al. (STOC' 15), who recognized cluster structure on graphs using the framework of property testing. In this paper, a good graph cluster on high dimensions is first defined for higher-order clustering. Then, query lower bound is given for testing whether this kind of good cluster exists. Finally, an optimal sublinear-time algorithm is developed for testing clusterability based on triangles

    Hypergraph expanders from Cayley graphs

    Get PDF
    We present a simple mechanism, which can be randomised, for constructing sparse 33-uniform hypergraphs with strong expansion properties. These hypergraphs are constructed using Cayley graphs over Z2t\mathbb{Z}_2^t and have vertex degree which is polylogarithmic in the number of vertices. Their expansion properties, which are derived from the underlying Cayley graphs, include analogues of vertex and edge expansion in graphs, rapid mixing of the random walk on the edges of the skeleton graph, uniform distribution of edges on large vertex subsets and the geometric overlap property.Comment: 13 page

    Hypergraph expanders of all uniformities from Cayley graphs

    Get PDF
    Hypergraph expanders are hypergraphs with surprising, non-intuitive expansion properties. In a recent paper, the first author gave a simple construction, which can be randomized, of 33-uniform hypergraph expanders with polylogarithmic degree. We generalize this construction, giving a simple construction of rr-uniform hypergraph expanders for all r≥3r \geq 3.Comment: 32 page

    Fine Grained Analysis of High Dimensional Random Walks

    Get PDF
    One of the most important properties of high dimensional expanders is that high dimensional random walks converge rapidly. This property has proven to be extremely useful in a variety of fields in the theory of computer science from agreement testing to sampling, coding theory and more. In this paper we present a state of the art result in a line of works analyzing the convergence of high dimensional random walks [Tali Kaufman and David Mass, 2017; Irit Dinur and Tali Kaufman, 2017; Tali Kaufman and Izhar Oppenheim, 2018; Vedat Levi Alev and Lap Chi Lau, 2020], by presenting a structured version of the result of [Vedat Levi Alev and Lap Chi Lau, 2020]. While previous works examined the expansion in the viewpoint of the worst possible eigenvalue, in this work we relate the expansion of a function to the entire spectrum of the random walk operator using the structure of the function; We call such a theorem a Fine Grained High Order Random Walk Theorem. In sufficiently structured cases the fine grained result that we present here can be much better than the worst case while in the worst case our result is equivalent to [Vedat Levi Alev and Lap Chi Lau, 2020]. In order to prove the Fine Grained High Order Random Walk Theorem we introduce a way to bootstrap the expansion of random walks on the vertices of a complex into a fine grained understanding of higher order random walks, provided that the expansion is good enough. In addition, our single bootstrapping theorem can simultaneously yield our Fine Grained High Order Random Walk Theorem as well as the well known Trickling down Theorem. Prior to this work, High order Random walks theorems and Tricking down Theorem have been obtained from different proof methods

    Improved Product-Based High-Dimensional Expanders

    Get PDF
    High-dimensional expanders generalize the notion of expander graphs to higher-dimensional simplicial complexes. In contrast to expander graphs, only a handful of high-dimensional expander constructions have been proposed, and no elementary combinatorial construction with near-optimal expansion is known. In this paper, we introduce an improved combinatorial high-dimensional expander construction, by modifying a previous construction of Liu, Mohanty, and Yang (ITCS 2020), which is based on a high-dimensional variant of a tensor product. Our construction achieves a spectral gap of Ω(1k2)\Omega(\frac{1}{k^2}) for random walks on the kk-dimensional faces, which is only quadratically worse than the optimal bound of Θ(1k)\Theta(\frac{1}{k}). Previous combinatorial constructions, including that of Liu, Mohanty, and Yang, only achieved a spectral gap that is exponentially small in kk. We also present reasoning that suggests our construction is optimal among similar product-based constructions.Comment: 17 pages; added reference

    Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

    Full text link
    There are a lot of recent works on generalizing the spectral theory of graphs and graph partitioning to hypergraphs. There have been two broad directions toward this goal. One generalizes the notion of graph conductance to hypergraph conductance [LM16, CLTZ18]. In the second approach one can view a hypergraph as a simplicial complex and study its various topological properties [LM06, MW09, DKW16, PR17] and spectral properties [KM17, DK17, KO18a, KO18b, Opp20]. In this work, we attempt to bridge these two directions of study by relating the spectrum of up-down walks and swap-walks on the simplicial complex to hypergraph expansion. In surprising contrast to random-walks on graphs, we show that the spectral gap of swap-walks can not be used to infer any bounds on hypergraph conductance. For the up-down walks, we show that spectral gap of walks between levels m,lm, l satisfying 1<m<l1 < m < l can not be used to bound hypergraph expansion. We give a Cheeger-like inequality relating the spectral of walks between level 1 and ll to hypergraph expansion. Finally, we also give a construction to show that the well-studied notion of link expansion in simplicial complexes can not be used to bound hypergraph expansion in a Cheeger like manner.Comment: 25 page
    • …
    corecore