834 research outputs found

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Optimization of Grant-Free NOMA With Multiple Configured-Grants for mURLLC

    Get PDF
    15 pages, 15 figures, submitted to IEEE JSAC SI on Next Generation Multiple Access. arXiv admin note: text overlap with arXiv:2101.0051515 pages, 15 figures, submitted to IEEE JSAC SI on Next Generation Multiple Access. arXiv admin note: text overlap with arXiv:2101.0051

    Multi-User Preemptive Scheduling For Critical Low Latency Communications in 5G Networks

    Get PDF
    • …
    corecore