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Abstract—Massive Ultra-Reliable and Low-Latency Commu-
nications (mURLLC), which integrates URLLC with massive
access, is emerging as a new and important service class in the
next generation (6G) for time-sensitive traffics and has recently
received tremendous research attention. However, realizing effi-
cient, delay-bounded, and reliable communications for a massive
number of user equipments (UEs) in mURLLC, is extremely
challenging as it needs to simultaneously take into account the
latency, reliability, and massive access requirements. To support
these requirements, the third generation partnership project
(3GPP) has introduced enhanced grant-free (GF) transmission
in the uplink (UL), with multiple active configured-grants (CGs)
for URLLC UEs. With multiple CGs (MCG) for UL, UE
can choose any of these grants as soon as the data arrives.
In addition, non-orthogonal multiple access (NOMA) has been
proposed to synergize with GF transmission to mitigate the
serious transmission delay and network congestion problems. In
this paper, we develop a novel learning framework for MCG-GF-
NOMA systems with bursty traffic. We first design the MCG-GF-
NOMA model by characterizing each CG using the parameters:
the number of contention-transmission units (CTUs), the starting
slot of each CG within a subframe, and the number of repetitions
of each CG. Based on the model, the latency and reliability
performances are characterized. We then formulate the MCG-
GF-NOMA resources configuration problem taking into account
three constraints. Finally, we propose a Cooperative Multi-
Agent based Double Deep Q-Network (CMA-DDQN) algorithm
to balance the allocations of the channel resources among MCGs
so as to maximize the number of successful transmissions under
the latency constraint. Our results show that the MCG-GF-
NOMA framework can simultaneously improve the low latency
and high reliability performances in massive URLLC.

Index Terms—Multiple configured-grants, massive URLLC,
NOMA, deep reinforcement learning, resource configuration.

I. INTRODUCTION

In the standardization of the Fifth Generation (5G) New
Radio (NR), three communication service categories were
defined to address the requirements of novel Internet of Things
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(IoT) use cases [1]. Among them, the Ultra-Reliable and Low-
Latency Communications (URLLC) is one of the most chal-
lenging services with stringent low latency and high reliability
requirements, i.e., in the Third Generation Partnership Project
(3GPP) standard [2], a general URLLC requirement is 1−10−5

target reliability within 1 ms user plane latency1. Considering
the explosive increase in the number of IoT devices, it is
essential to improve the access performance in networks for
accommodating massive access with various requirements.
Integrating URLLC with massive access, massive URLLC
(mURLLC) wireless networks are able to realize efficient,
delay-bounded, and reliable communications for a massive
number of IoT devices [3]. The mURLLC is becoming a new
and important service class in the next generation (6G) for the
time-sensitive traffics and has received tremendous research
attention [4]. However, addressing the need in mURLLC is
fundamentally challenging as it needs to simultaneously guar-
antee the latency, reliability, and massive access requirements.

To support these requirements, several new features such as
configured-grant (CG) transmission with automatic repetitions
[5], user-equipment (UE) multiplexing [6], and multiple active
CGs for URLLC UEs [7] were standardized by the 3GPP.

1) Grant-Free NOMA: To reduce the latency in URLLC,
the grant-free (GF) (a.k.a. configured-grant (CG)) transmission
is proposed for 5G NR in 3GPP Release 15 [5] as an alter-
native for traditional grant-based (GB) (a.k.a. dynamic-grant
(DG)) in Long Term Evolution (LTE). In NR GF transmission,
the UE is allowed to transmit data to the Base Station (BS) in
an arrive-and-go manner without scheduling request (SR) and
uplink (UL) resource grant (RG) to reduce latency. To increase
the reliability in URLLC, the K-repetition GF transmission
has been proposed by 3GPP, where a pre-defined number of
consecutive replicas of the same packet are transmitted in the
consecutive time slots [5]. More details about K-repetition GF
transmission can be found in [8]. To mitigate the serious trans-
mission delay and network congestion problems caused by
collision events in contention-based GF transmission and en-
hance the uplink connectivity, non-orthogonal multiple access
(NOMA) has been proposed to synergize with GF transmission
[6], [9], where GF-NOMA allows multiple UEs to transmit
over the same physical resource by employing user-specific

1User plane latency is defined as the one-way radio latency from the pro-
cessing of the packet at the transmitter to when the packet has been received
successfully and includes the transmission processing time, transmission time
and reception processing time.
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signature patterns (e.g, codebook, pilot sequence, mapping
pattern, demodulation reference signal, power, etc.) [10].

2) Multiple Configured-Grants for Grant-Free NOMA:
3GPP proposed multiple CGs (MCG) transmission in Release
16 [7] to support different starting offsets of the resources
with respect to UL packet arrival time as shown in Fig. 1.
On the one hand, there is a chance of reducing the latency

Fig. 1: Multiple CGs (MCG) configurations for K-repetition
GF transmission, T: packet transmission, D: DL processing,

F: ACK/NACK feedback, and U: UL processing.

in cases where the data of an UE arrives (i.e., UE is active)
after the starting slot offset of the CG 1 (UE 2, 3, and 4
in Fig. 1). As illustrated in Fig. 1, UE 2 can transmit using
the CG 2 without waiting for the CG period in the next
subframe as in the single CG (SCG). On the other hand, there
is a chance of mitigating the collision events when multiple
UEs are active and waiting for the CG period to transmit
the packet. For example, UE 2 and UE 3 can transmit using
different CG resources without collision as shown in Fig. 1.
Multiple CGs also support different resource sizes, repetitions,
and periodicity, to suit different data requirements, respectively
[11], [12].

A. Related Works

Scanning the open literature, to the best of our knowledge,
most works focused on the analysis or optimization of sin-
gle configured-grant GF-NOMA (SCG-GF-NOMA) transmis-
sions.

In terms of analysis, a GF-NOMA strategy was proposed in
[13], in which active devices transmitted data over a randomly
selected available channel. In order to allow the receiver
decode successfully, the transmitted data was encoded with
rateless code. In [14], a new GF-NOMA analytical framework
was proposed and the expressions for outage probability and
throughput for GF-NOMA transmissions were derived, by
treating collisions as interference through successive joint
decoding or successive interference cancellation (SIC). In [15],
a semi-GF scheme has been proposed, where the dedicated GB
access was provided for one user while GF access was used
by other users.

In terms of optimization, several studies have applied
deep reinforcement learning (DRL) to optimize the SCG-GF-
NOMA networks. DRL can obtain better resource allocation
with near-optimal resource access probability distribution to
improve the SCG-GF-NOMA transmission [16]. In [16], the
authors designed users and sub-channel clusters in a region to
reduce collisions of the GF-NOMA system. The formulated
long-term cluster throughput problem is solved via DRL
algorithm for optimal sub-channel and power allocation. In
[17], the authors introduced power-domain NOMA to fur-
ther improve network throughput and defined a new reward
that enabled only one acknowledgement bit returning to the
device from the BS in each time slot. In [18], the authors
proposed two distributed Q-learning aided uplink GF-NOMA
schemes to maximize the number of accessible devices, where
the bursty traffic of massive Machine Type Communications
(mMTC) devices is carefully considered.

Different from [13]–[18], we aim to first design a
novel framework about multiple CGs GF-NOMA (MCG-GF-
NOMA) networks and optimize the long-term successfully
served UEs under the latency constraint based on this frame-
work for mURLLC service.

B. Motivations and Contributions

As mentioned before, research on the MCG-GF-NOMA
networks to support mURLLC is fundamental and essential,
which is an untreated and challenging problem. To cope with
it, accurately modeling, analyzing, and optimizing the MCG-
GF-NOMA resource is fundamentally important, but the inter-
play between latency and reliability brings extra complexity.
In addition, in the GF-NOMA scheme, the data is transmitted
along with the pilot randomly, which is unknown at the BS
and can lead to new research problems. The blind detection
of active UEs is needed due to that the set of active users
is unknown to the BS, which also brings extra challenges.
The MCG-GF-NOMA system optimization can hardly be
solved via the traditional convex optimization method, due
to the complex communication environment with the lack of
tractable mathematical formulations, whereas Reinforcement
Learning (RL), can be a potential alternative approach, due
to that it solely relies on the self-learning of the environment
interaction, without the need to derive explicit optimization
solutions based on a complex mathematical model. In this
paper, we address the following fundamental questions: 1)
how to design the MCG-GF-NOMA network; 2) how to
quantify the URLLC reliability and latency performances
in the MCG-GF-NOMA network; 3) how to formulate the
MCG-GF-NOMA resources configuration problem taking into
account the reliability and latency; and 4) how to balance the
allocations of channel resources among multiple CGs so as to
provide maximum success transmissions in mURLLC scenario
with bursty traffic. The main contributions of this paper are as
follows:
• We propose a novel MCG-GF-NOMA learning frame-

work for attaining the long-term successfully served UEs
under the latency constraint in mURLLC service, where
the latency and reliability performances are characterized
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Fig. 2: 5G NR frame structure for numerology: (a) 15 kHz with 14 symbols/slot, (b) 60 kHz with 7 symbols/mini-slot.

and analyzed for each CG. In this framework, we practi-
cally simulate the random traffics, the resource config-
uration, the collision detection, and the data decoding
procedures.

• We design a MCG-GF-NOMA system, where we charac-
terize each CG using the parameters including the number
of contention-transmission units (CTUs), the starting slot
of each CG within a subframe, and the number of
repetitions of each CG. We then formulate the MCG-
GF-NOMA resource configuration problem taking into
account three constraints: 1) the CTU resource constraint
is set to compare the MCG-GF-NOMA scheme with the
SCG-GF-NOMA scheme; 2) the latency constraint is set
to satisfy the latency requirement; and 3) the starting
slot constraint is set to support various UL packet arrival
times.

• We propose a Cooperative Multi-Agent learning tech-
nique based Double Deep Q-Network (CMA-DDQN)
algorithm to balance the allocations of resources among
MCGs so as to maximize the number of successful
transmissions under the latency constraint, which breaks
down the selection of high-dimensional parameters into
multiple parallel sub-tasks with a number of DDQN
agents cooperatively being trained to produce each pa-
rameter.

• Our results show that the MCG-GF-NOMA learning
framework can improve the low latency and high realibity
performances in a massive URLLC scenario. First, the
number of successfully served UEs in the MCG-GF-

NOMA system is up to four times more than that in the
SCG-GF-NOMA system, and the latency of successfully
served UEs in the MCG-GF-NOMA system is circa half
of that in the SCG-GF-NOMA system. Second, the MCG-
GF-NOMA learning framework can also increase the
CTU resource utilization efficiency compared to the SCG-
GF-NOMA system.

C. Organization

The remainder of this paper is structured as follows. Section
II illustrates the system model of MCG-GF-NOMA system.
Section III describes the problem analysis and formulation.
Section IV elaborates on the proposed CMA-DDQN algorithm
for solving the formulated problem. The simulation results are
illustrated in Section V. Finally, Section VI concludes the main
concept, insights and results of this paper.

II. SYSTEM MODEL

We consider a single-cell uplink wireless network with a
coverage radius of R. Particularly, a BS is located at the center
of the cell, and a number of NUE static UEs are randomly
distributed around the BS in an area of the plane R2, where the
UEs remain spatially static once deployed. The BS is unaware
of the status of these UEs, hence no uplink channel resource
is scheduled to them in advance. To capture the effects of
the physical radio, we consider the standard power-law path-
loss model with the path-loss attenuation r−η , where r is
the Euclidean distance between the UE and the BS and η
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is the path-loss attenuation factor. In addition, we consider
a Rayleigh flat-fading environment, where the channel power
gains h are exponentially distributed (i.i.d.) random variables
with unit mean.

A. 5G NR Frame Structure and Numerologies

5G NR defines five numerologies based on subcarrier spac-
ing (SCS) ∆f = 2µ × 15 kHz, where µ = 0, 1, 2, 3, 4 is the
numerology factor [19], instead of a single value of 15 kHz
in LTE. This feature reduces transmission time by decreasing
the slot length as shown in Fig. 2. As depicted in Fig. 2, the
per frame duration in NR is still 10 ms, and the same as in
LTE. One frame consists of 10 subframes and each with 1 ms
duration. With the increased SCS, i.e., a large value of µ, the
slot duration reduces according to 1/2µ ms. To further reduce
the latency by shortening transmission time interval (TTI), in
5G NR, a TTI can be a mini-slot of 2, 4, or 7 Orthogonal
Frequency Division Multiplexing (OFDM) symbols instead
of 14 OFDM symbols per TTI in LTE (see Fig. 2), and a
transmission can start at the beginning of a mini-slot [19].
Mini-slot durations will depend on the SCS (µ) and on the
number of OFDM symbols included in a slot (Nsym), i.e.,

TTI = Nsym/2
µ/14 (ms). (1)

Thus, one NR subframe may have one (for µ = 0) or multiple
slots depending on the value of the numerology factor µ, i.e.,

Nslot = 1/TTI = 2µ × 14/Nsym. (2)

B. Inter-Arrival Traffic

The small packets for each UE are generated according
to random inter-arrival processes over the TTIs, which are
Markovian as defined in [20], [21] and unknown to BS.
We consider a bursty traffic process, which occurs when a
large number of UEs attempt to access the same network
simultaneously during a short period of time [22]. This is
especially observable when the number of UEs could be
huge. 3GPP recommends applying a Beta distribution based
arrival process to model the arrival intensity during bursty
traffic arrivals in [21]. Considering the nature of slotted-Aloha,
the newly activated devices can only execute transmission
at the beginning of the closest CG. This means that the
UEs transmitting in a CGi period come from those who
received a packet within the interval between the last period
(τ i−1,τ i). The traffic instantaneous rate in packets in a period
is described by a function p(τ), so that the packets arrival rate
in the ith CG period is given by

Ai =

∫ τi

τi−1

p(τ)dτ. (3)

Each UE would be activated at any time τ , according to a
time limited Beta probability density function (PDF) as [21,
Section 6.1.1]

p(τ) =
τα−1(T − τ)

β−1

Tα+β−1Beta(α, β)
, (4)

where T is the total time duration of the bursty traffic and
Beta(α, β) =

∫ 1

0
τα−1(1− τ)β−1dτ is the Beta function with

the constant parameters α and β [23].

C. Grant-Free NOMA Model

We focus on the UEs that are connected to the network in
a GF manner. In order to deal with the resource constraint
problem caused by orthogonal resource allocation, NOMA is
introduced to increase the number of accessible devices in this
paper. In the GF-NOMA, the smallest transmission unit that
a UE can compete for is called a contention transmission unit
(CTU). A CTU may comprise of a MA physical resource and a
MA signature [10], [24], [25]. The MA physical resources rep-
resent a set of time-frequency resource blocks (RBs) and the
MA signatures represent a set of pilot sequences for channel
estimation and/or UE activity detection, and a set of codebooks
for robust data transmission and interference whitening, etc.
Without loss of generality, we consider that there are L
different pilot sequences defined over one time-frequency RB
as shown in Fig. 3. Each pilot sequence l is made unique
to a specific codebook and acts as the UE’s signature2 [6],
[14]. There are obviously NCTU = F × L unique CTUs
over F time-frequency RBs configured by the BS in each
CG configuration period. Each UE randomly choose one CTU
from the pool to transmit in this period. Unlike orthogonal

Fig. 3: An illustration of CTU in a time-frequency space.

resource allocation (i.e., each time-frequency resource can
only be used by one UE), NOMA allows multiple UEs with
different codebooks and pilot sequences to transmit over the
same time-frequency resource, thus increasing the number of
accessible UEs without expanding physical resources. How-
ever, a collision will occur when more than one UE selects
the same codebook and pilot sequence (i.e. the same CTU).

D. Multiple Configured-Grants Grant-Free NOMA (MCG-
GF-NOMA) Design

We consider the MCG-GF-NOMA system as shown in
Fig. 4. The BS configures NCG UL CGs for massive URLLC
transmissions at each subframe. The UE chooses the config-
uration with the earliest starting point to transmit data. Each
CG is consist of different resources in the CTU domains, and
is associated with the following transmission parameters:

2A one-to-one mapping or a many-to-one mapping between the pilot
sequences and codebooks can be predefined. Since it has been verified in
[26] that the performance loss due to codebook collision is negligible for a
real system, we focus on the pilot sequence collision and consider the one-
to-one mapping as [14], [27].
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Fig. 4: Multiple CGs (MCG) configurations with four CGs.

• Number of CTUs (NCTU)
• Starting slot within a subframe (Nstart)
• Number of repetitions (Nrepe)
• Number of slots in a subframe (Nslot)

Without loss of generality, we consider that all the subframe
has the same number of slots all the time, i.e., the Nslot is
the same for each CG and each subframe. Thus, for ease
of presentation, we represent each CGi in the tth subframe
by CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i}. As illustrated in Fig. 4,

CGt
1{2, 0, 4}, CGt

2{1, 1, 3}, CGt
3{3, 2, 2}, and CGt

4{2, 3, 1}
are four CGs in the tth subframe.

The main variables are summarized in Table I.

III. PROBLEM ANALYSIS AND FORMULATION

In a given subframe t, the BS preconfigured NCG CGs for
UEs to transmit their packets. The BS sends radio resource
control (RRC) (for both type 1 and type 2 CG transmission)
or downlink control information (DCI) (only for type 2 CG
transmission) to activate or release the CG configurations
[28]. As soon as the URLLC data arrives, a UE can choose
the CGt

i with the earliest starting point (i.e., the smallest
N t

start,i) to transmit data. Suppose that the UE choose the
CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i}, then the UE randomly choose

a CTU from N t
CTU,i available CTUs and start transmit at

slot N t
start,i for N t

repe,i repetitions. The BS decodes (D) each
repetition independently and the transmission is successful
when at least one repetition succeeds. After processing all the
received N t

repe,i repetitions, the BS transmits the ACK/NACK
feedback (F) to the UE. Considering the small packets of
URLLC traffic, we set the packet transmission time as one

TTI. The BS feedback time and the BS (UE) processing time
are also assumed to be one TTI following our previous work
[8]. The latency analysis and the reliability analysis for the
MCG-GF-NOMA are described in the following.

A. MCG-GF-NOMA Latency Analysis

In order to meet the low latency requirement for mURLLC,
we consider that the active UE can only transmit for one round
trip time (RTT). The RTT is the length time it takes for a data
packet to be sent to a destination plus the time it takes for
an acknowledgment of that packet to be received back at the
origin. According to Fig. 4, the incurred latency of the UE
using the CGti at the tth subframe includes two parts: the
waiting time T twait,i and the RTT T tRTT,i. We obtain the RTT
of the UE using CGti at the tth subframe as

T tRRT,i = N t
repe,i + 3. (5)

It should be noted that the UEs transmitting in CGt
i come

from those who received a packet after the start point of the
CGt

i−1. Thus, the waiting time is the length time from the
start point of the CGt

i−1 to the start point of the CGt
i. We

derive the waiting time as

T twait,i = τ i − τ i−1, (6)
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TABLE I: Notation Table

Symbol Meaning Symbol Meaning
NUE The number of static UEs R The coverage radius of the cell
r The distance between an UE and the BS h The Rayleigh fading channel power gain
η The path-loss exponent µ The numerology factor
Nsym The number of OFDM symbols included in a

slot
Nslot The number of slots within a subframe

A The packets arrival rate p The Beta probability density
T The duration of the bursty traffic L The number of pilot sequences over one RB
F The number of time-frequency RBs NCG The number of CGs configured at each subframe
NCTU The number of CTUs NCTU The set of the number of CTUs
Nstart The starting slot within a subframe Nstart The set of the starting slot
Nrepe The number of repetitions t The tth subframe
T t
wait,i The waiting time of the UE using CGi at the

tth subframe
T t
RRT,i The RTT time of the UE using CGi at the tth

subframe
T t
laten,i The latency of the UE using CGi at the tth

subframe
T t
aver The average latency of the successfully served

UEs at each subframe
Nt

suc,i The successfully served UEs using CGi at the
tth subframe

N t
IC,i The set of idle CTUs for CGi at the tth sub-

frame
N t

SC,i The set of singleton CTUs for CGi at the tth
subframe

N t
CC,i The set of collision CTUs for CGi at the tth

subframe
N t

f,SU,i The set of UEs choosing the singleton CTUs for
CGi on the f th RB

Nt
f,CU,i The number of UEs choosing the collision CTUs

for CGi on the f th RB
P The transmission power σ2 The noise power
γth The received SINR threshold CGi The ith CG in a subframe
NCTU,SCG The configured CTU numbers for the SCG-GF-

NOMA system
TRTT The length of one round trip time

Twait The length of waiting time Tlaten The latency of the successfully served UE
Taver The average latency of the successfully served

UEs in each subframe
Ps,f,i The received power of the sth UE in the nth

repetition of the CG i on the f th RB

where

(τ i−1, τ i) = (7)

(Nslot × (t− 1) +N t
start,i−1, Nslot × (t− 1) +N t

start,i),
(i > 1),
(0, 0),
(i = 1, t = 1),
(Nslot × (t− 2) +N t

start,Nt−1
CG

, Nslot × (t− 2) +Nslot),

(i = 1, t > 1).

According to (5), (6), and (7), we obtain the latency for CGt
i

as

T tlaten,i = T twait,i + T tRRT,i (8)

=


N t

start,i −N t
start,i−1 +N t

repe,i + 3, (i > 1),
N t

repe,i + 3, (i = 1, t = 1),
Nslot −N t

start,Nt−1
CG

+N t
repe,i + 3, (i = 1, t > 1).

In order to compare the latency performance, we calculate
the average latency of the successfully served UEs in each
subframe as

T taver =

NCG∑
i

T tlaten,i ×N t
suc,i

NCG∑
i

N t
suc,i

, (9)

where N t
suc,i is the successfully served UEs using the CGi at

the tth subframe and is obtained in the next subsection about
reliability analysis.

B. MCG-GF-NOMA Reliability Analysis
During each RTT, if the GF-NOMA procedure fails, the UE

fails to be served and its packets will be dropped. The GF-
NOMA fails if: (i) a CTU collision occurs when two or more
UEs choose the same CTU (i.e., UE detection fails); or (ii)
the SIC decoding fails (i.e., data decoding fails).

1) CTU dectection: At each RTT, each active UE transmits
its packets to the BS by randomly choosing a CTU from the
earliest CGi. The BS can detect the UEs that have chosen
different CTUs. However, if multiple UEs choose the same
CTU, the BS cannot differentiate these UEs and therefore
cannot decode the data. We categorize the CTUs from each
CGi into three types [14]:
• idle CTU: a CTU which has not been chosen by any UE;
• singleton CTU : a CTU chosen by only one UE;
• collision CTU : a CTU chosen by two or more UEs.

After collision detection at the tth subframe for the CGi, the
BS observes the set of singleton CTUs N t

SC,i, the set of idle
CTUs N t

IC,i, and the set of collision CTUs N t
CC,i for each

CGi.
2) SIC decoding: After detecting the UEs that have chosen

the singleton CTUs, the BS performs the SIC technique to
decode the data of these UEs. Based on the NOMA principles,
at each iterative stage of SIC, the BS first decodes the UE
with the strongest received power and then subtracted the
successfully decoded signal from the received signal (we
assume perfect SIC the same as [14]). That is to say, the
decoding order at the BS is in sequence to the received power.
It worth noting that during the decoding, the UEs that transmit
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on different RBs do not interfere with each other due to the
orthogonality, and only UEs that transmit on the same RB
cause interference. Thus, in order to characterize the UEs
transmitting with CGi on the f th RB, we represent theN t

f,SU,i

as the set of UEs that have chosen the singleton CTUs for the
CGi on the f th RB, the N t

f,SU,i =
∣∣∣N t

f,SU,i

∣∣∣ as the number
of UEs that have chosen the singleton CTUs for the CGi on
the f th RB (|·| denotes the number of elements in any vector
·), and N t

f,CU,i as the number of UEs that have chosen the
collision CTUs using the CGi on the f th RB. We define the
received power of the sth UE in the nth repetition of the CGi

on the f th RB as

P ts,f,i = Phts,f,irs
−η, (10)

where P is the transmission power, r is the Euclidean distance
between the UE and the BS, η is the path-loss attenuation
factor, h is the Rayleigh fading channel power gain from the
UE to the BS.

Suppose that the received power obeys P t1,f,i ≥ P t2,f,i ≥
... ≥ P tNt

f,SU,i
, the decoding order should be from the 1st UE to

the Nf,SU,ith UE. In each iterative stage of SIC decoding, the
CTU with the strongest received power is decoded by treating
the received powers of other CTUs over the same RB as the
interference. Thus, at the tth subframe, in the nth repetition of
the CGi on the f th RB, the signal-to-interference-plus-noise
ratio (SINR) of the sth stage of SIC decoding of the sth UE
is derived as

SINRt
s,f,i =

P ts,f,i
Nt

f,SU,i∑
m=s+1

P tm,f,i +
Nt

f,CU,i∑
n′=1

P tn′,f,i + σ2

, (11)

where σ2 is the noise power.
Each iterative stage of SIC decoding is successful when

the SINR in that stage is larger than the SINR threshold,
i.e., SINRt

s,f,i ≥ γth. The SIC procedure stops when one
iterative stage of the SIC fails or when there are no more
signals to decode. The SIC decoding procedure for each CGi

is described in the following.

• Step 1: Start the nth repetition with the initial n = 1,
N t
f,SU,i, N

t
f,SU,i and N t

f,CU,i;
• Step 2: Decode the sth UE with the initial s = 1 using

(11);
• Step 3: If the sth UE is successfully decoded, put the

decoded UE in setN t
f,suc,i(n) and go to Step 4, otherwise

go to Step 5;
• Step 4: If s ≤ N t

f,SU,i, do s = s + 1, go to Step 2,
otherwise go to Step 5;

• Step 5: SIC for the nth repetition stops;
• Step 6: If n ≤ Nrepe,i, do n = n + 1, go to Step 1,

otherwise go to the end.

Finally, the set of successfully served UEs using the CGi on
the f th RB at the tth subframe is derived as

N t
f,suc,i =

Nrepe,i⋃
n=1

(N t
f,suc,i(n)), (12)

the set of the successfully served UEs using the CGi at the
tth subframe is obtained as

N t
suc,i =

F t⋃
f=1

(N t
f,suc,i), (13)

and the set of the successfully served UEs at the tth subframe
is obtained as

N t
suc =

NCG⋃
i=1

(N t
suc,i). (14)

Then, N t
suc = |N t

suc| is the number of successfully served
UEs.

C. Problem Formulation

In this work, we aim to tackle the problem of optimizing
the MCG-GF-NOMA configuration defined by parameters
CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i} for each subframe t. At each

subframe t, the BS aims at maximizing a long-term objective
Rt related to the average number of UEs that have successfully
send data with respect to the stochastic policy π that maps the
current observation history Ot to the probabilities of selecting
each possible parameters in At. This optimization problem
(P1) can be formulated as:

(P1 :) max
π(At|Ot)

∞∑
k=t

γk−tEπ[Nk
suc] (15)

s.t.

NCG∑
i=1

N t
CTU,i = N t

CTU,SCG, (16)

N t
start,i +N t

repe,i + 3 = Nslot,∀i ∈ [1, NCG], (17)

N t
start,i < N t

start,i+1 < Nslot − 3,∀i ∈ [1, NCG], (18)

where γ ∈ [0, 1) is the discount factor for the performance
accrued in the future subframes, and γ = 0 means that the
agent just concerns the immediate reward. The CTU resource
constraint in (16) is set to compare with the SCG-GF-NOMA
scheme, where N t

CTU,SCG is the configured CTU numbers
for the SCG-GF-NOMA. That is to say, the MCG-GF-NOMA
configuration uses the same frequency resources but overlap in
time and have different starting points so they do not require
the additional resources compared to the conventional SCG-
GF-NOMA scheme. The latency constraint in (17) is set to
satisfy the latency requirement. That is to say, the transmission
must be completed in one subframe (1 ms). Otherwise, the
packet will be dropped. The starting slot constraint in (18) is
set to support different UL packet arrival times.

All these constraints yield a mixed-integer non-convex
problem and, in general, there is no standard method for
solving this kind of problem efficiently. Additionally, since
the dynamics of the MCG-GF-NOMA system is Markovian
over the continuous subframes, this is a Partially Observable
Markov Decision Process (POMDP) problem that is gen-
erally intractable for the conventional convex optimization
algorithms due to their limitation in overcoming the dynamic
in the environment. Here, partial observation refers to that
a BS can not fully know all the information of the com-
munication environment, including, but not limited to, the
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channel conditions, the random collision process, and the
traffic statistics. The search space is expanded as the number
of parameters increases, which also makes the conventional
gradient-based optimization techniques unsuitable. The deep
reinforcement learning (DRL) is regarded as powerful tool
to address complex dynamic control problems in POMDP.
The reasons in choosing DQN are that: 1) the Deep Neural
Network (DNN) function approximation is able to deal with
several kinds of partially observable problems [29], [30]; 2)
DQN has the potential to accurately approximate the desired
value function while addressing a problem with very large
state spaces; 3) DQN is with high scalability, where the scale
of its value function can be easily fit to a more complicated
problem; 4) a variety of libraries have been established to facil-
itate building DNN architectures and accelerate experiments,
such as TensorFlow, Pytorch, Theano, Keras, and etc.. The
goal of deploying and designing the MCG-GF-NOMA is for
maximizing the long-term benefits, which falls into the field
of the DRL algorithm for the reason that this algorithm can
monitor the reward resulting from its actions and incorporate
farsighted system evolution instead of myopically optimizing
current benefits.

IV. PROPOSED OPTIMIZATION SOLUTION

In this section, we propose a Cooperative Multi-Agent
Double Deep Q-Network (CMA-DDQN) approach to tackle
the problem (P1), which breaks down the selection in high-
dimensional action space into multiple parallel sub-tasks.

The aim of the CMA-DDQN model is to enable the agent
to carry out the optimal actions to maximize the long-term
sum reward. The principle of the CMA-DDQN model is
maximizing the long-term sum reward instead of aiming for
maximizing the reward at a particular subframe. Thus, in
the CMA-DDQN model, the selected action may not be the
optimal choice for the current subframe, but the optimal choice
for pursing long-term benefits. In this paper, the parameters
configuration of MCG-GF-NOMA is considered as discrete,
so the value-based RL algorithm is invoked. The state space,
action space, reward function design of the proposed CMA-
DDQN based algorithm are specified.

A. Reinforcement Learning Framework

To optimize the number of successfully served UEs in
MCG-GF-NOMA system, we consider a RL-agent deployed
at the BS to interact with the environment in order to choose
appropriate actions progressively leading to the optimization
goal. We define S ∈ S, A ∈ A, and R ∈ R as any state, action,
and reward from their corresponding sets, respectively. At the
beginning of each subframe t, the RL-agent first observes the
current state St corresponding to a set of previous observations
U t
′

for all prior subframes (t′ = 1, ..., t− 1) in order to select
an specific action At ∈ A(St). After carrying out the action
At, the RL-agent transits to a new observed state St+1 and
obtains a corresponding reward Rt+1 as the feedback from the
environment, which is designed based on the new observed
state St+1 and guides the agent to achieve the optimization

goal. After enough iterations, the BS can learn the optimal
policy that maximizes the long-term rewards.

At each subframe t, a Q-value is calculated based on the
current state and previously taken actions. Thus, the state,
action and Q-value is stored in a Q-function, Q(St, At), which
determines the decision policy π. The Q-value and Q-function
are updated based on the current state, previously taken actions
and the received reward by following the principle

Q(St, At) (19)

= Q(St, At) + λ[Rt+1 + γmax
A∈A

Q(St+1, A)−Q(St, At)],

The detailed descriptions of the state, action and reward of
problem (P1) are introduced as follows.

1) States in the Q-learning Model: In terms of the state
space of the proposed CMA-DDQN model, it contains five
parts: the number of the collision CTUs N t′

CC, the number of
the idle CTUs N t′

IC, the number of the singleton CTUs N t′

SC,
the number of UEs that have been successfully detected and
decoded under the latency constraint N t′

suc, and the number of
UEs that have been successfully detected but not successfully
decoded N t′

fdec.
2) Actions in the Q-learning Model: Practically, the MCG-

GF-NOMA system is always configured with multiple CGs
to serve UEs with random traffic. In this section, we
study the problem (P1) of optimizing the resource config-
uration for multiple CGs each with parameters CGt =
{N t

CTU,i, N
t
start,i, N

t
repe,i}

NCG
i=1 , where N t

CTU,i is chosen from
the set of the number of the CTUs NCTU, N t

start,i is chosen
from the set of the value of the repetitions Nstart, and N t

repe,i

is chosen from the set of the value of the repetitions Nrepe.
This joint optimization by configuring each parameter in each
CG can improve the overall data transmission performance.
However, considering multiple CGs results in the increment
of observations space, which exponentially increases the size
of state space. For example, the number of available actions
corresponds to the possible combinations of configurations

|A| =
NCG∏
i=1

(|NCTU,i| × |Nstart,i| × |Nrepe,i|). To train Q-

agent with this expansion, the requirements of time and
computational resources greatly increase. In view of this, we
revise the configured parameters by considering the constraints
from (16) to (18).

First, considering the CTU resource constraint
NCG∑
i=1

N t
CTU,i = N t

CTU,SCG as presented in (16), we could

obtain the action set AtCTU, which consists of the actions
AtCTU ∈ AtCTU with AtCTU = {N t

CTU,1, ..., N
t
CTU,NCG

}. To
find all possible combinations of the number of CPUs for
multiple CG configurations with the CTU resource constraint,
we follow the Algorithm 1.

In addition, considering the starting slot constraint
N t

start,i < N t
start,i+1 < Nslot − 3,∀i ∈ [1, NCG] in (18), we

could obtain the action set Atstart, which consists of the actions
Atstart ∈ Atstart with Atstart = {N t

start,1, ..., N
t
start,NCG

}.
Similarly, following the Algorithm 1, we can get all possible
combinations of the starting slots for multiple CG configu-
rations with the starting slot constraint. Different from the
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Algorithm 1: Generate the set of actions for the
number of CTUs configuration.

Input: Set of number of CTUs NCTU, Length of
CTUs set NCTU = |NCTU|, Number of
configured CTUs for the SCG-GF-NOMA
N t

CTU,SCG, Number of the configured CG at
each subframe NCG.

Output: The set of actions for the number of CTUs
configuration AtCTU

1 Define set AtCTU;
2 Generate the initial index matrix: X ∈ C1×NCG with

all the elements equaling to 0;
3 Generate the max index matrix: Xmax ∈ C1×NCG with

all the elements equaling to NCTU;

4 The total searching steps Steps =
NCG∏
i=1

Xmax[i];

5 for j ← 1 to Steps do

6 if
NCG∑
i=1

NCTU[X[i]] = N t
CTU,SCG then

7 Put action
AtCTU = {NCTU[X[i]],∀i ∈ [1, NCG]} into
the action set AtCTU;

8 end
9 for k ← 1 to NCG do

10 X[−k]+ = 1;
11 if X[−k]<Xmax[−k] : break;
12 X[−k]% = Xmax[−k].
13 end
14 end

CTU action set, in step 6, the constraint should be starting
slot constraint.

According to the latency constraint in (17), we have
N t

repe,i = Nslot − 3 − N t
start,i,∀i,. Therefore, two ac-

tions set AtCTU and Atstart is enough to characterize
the multiple CG configurations defined by parameters
CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i}.

3) Reward Function in the Q-Learning Model: As the op-
timization goal is to maximize the number of the successfully
served UEs under the latency constraint, we define the reward
Rt+1 as

Rt+1 = N t
suc, (20)

where N t
suc is the number of UEs that have been successfully

detected and decoded under the latency constraint.

B. Cooperative Multi-Agent DDQN Approach

When the number of actions and states is small, the RL
algorithm can efficiently obtain the optimal policy. However,
when a large number of actions and states exist, which will
inevitably result in massive computation latency and severely
affect the performance of the RL algorithm. To address this
issue, DRL is introduced, where DRL can directly control the
behavior of each agent and solve complex decision-making
problems, through interaction with the environment [29], [30].

In addition, Multi-Agent RL (MA-RL) is introduced with cen-
tralized or decentralized rewards. In MA-RL with centralized
rewards, all agents receive a common (central) reward, while
in MA-RL with decentralized rewards, every agent obtains a
distinct reward [31]. However, in MA-RL with decentralized
rewards, all agents may compete with each other, i.e., agents
may act in a selfish behavior for requiring the highest reward
which may affect the global network performance. To convert
this selfishness into cooperative behavior, the same reward
may be assigned to all agents [32]. In this section, we apply
the Cooperative Multi-Agent technique based DDQN (CMA-
DDQN) to prevent the selfish behavior of agents.

The challenge of this approach is how to evaluate each
action according to the common reward function. For each
DQN agent, the received reward is corrupted by massive
noise, where its own effect on the reward is deeply hidden
in the effects of all other DQN agents. For instance, a positive
action can receive a mismatched low reward due to other
DQN agents’ negative actions. Fortunately, in our scenario,
all DQN agents are centralized at the BS, which means
that all DQN agents can have full information among each
other. The CMA-DDQN algorithm utilizes the experience
replay technique to enhance the convergence performance
of RL. When updating the CMA-DDQN algorithm, mini-
batch samples are selected randomly from the experience
memory as the input of the neural network, which breaks
down the correlation among the training samples. In addition,
through averaging the selected samples, the distribution of
training samples can be smoothed, which avoids the training
divergence. We define Atx as the action selected by the
xth agent. Each xth agent is responsible for updating the
value Q(St, Atx) of action Atx in state St, where the state
variable St = [At−1, U t−1, At−2, U t−2, ..., At−Mo , U t−Mo ]
only includes information about the last Mo RTTs. All agents
receive the same reward Rt+1 at the end of each subframe.

The DDQN agents are trained in parallel. Each agent x
parameterizes the action-state value function Q(St, Atx) by
using a function Q(St, Atx,θx), where θx represents the
weights matrix of a multiple layers DNN with fully-connected
layers. The variables in the state St is fed in to the DNN as
the input; the Rectifier Linear Units (ReLUs) are adopted as
intermediate hidden layers; while the output layer is consisted
of linear units, which are in one-to-one correspondence with
all available actions in A. The online update of weights matrix
θx is carried out along each training episode by using DDQN
[33]. Accordingly, learning takes place over multiple training
episodes, where each episode consists of several RTT periods.
In each RTT, the parameters θx of the Q-function approxima-
tor Q(St, Atx,θx) are updated using RMSProp optimizer [34]
as

θt+1
x = θtx − λRMS∇LDDQN

x (θtx) (21)

where λRMS ∈ (0, 1] is RMSProp learning rate, ∇LDDQN
x (θtx)

is the gradient of the loss function LDDQN
x (θtx) used to

train the state-action value function. The gradient of the loss
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Algorithm 2: CMA-DQN Based MCG-GF-NOMA
Uplink Resource Configuration

Input: : Action space A and Operation Iteration I.
1 Algorithm hyperparameters: learning rate

λRMS ∈ (0, 1]), discount rate γ ∈ [0, 1), ε-greedy
rate ε ∈ (0, 1], target network update frequency Y ;

2 Initialization of replay memory M to capacity D, the
state-action value function Q(S,A,θ), the parameters
of primary Q-network θ, and the target Q-network θ̄;

3 for Iteration ← 1 to I do
4 Initialization of S1 by executing a random action

A0
x;

5 for t ← 1 to T do
6 if pε < ε Then select a random action Atx from

Ax
7 else select Atx = arg max

a∈Ax

Q(St, Atx,θx).

8 The BS broadcasts Atx and backlogged UEs
attempt communication in the tth subframe;

9 The BS observes state St+1, and calculate the
related reward Rt+1;

10 Store transition (St, Atx, R
t+1, St+1) in replay

memory Mx;
11 Sample random minibatch of transitions

(St, Atx, R
t+1, St+1) from replay memory

Mx;
12 Perform a gradient descent step and update

parameters θx for Q(St, Atx,θx) using (22);
13 Update the parameter θ̄ = θ of the target

Q-network every Y steps.
14 end
15 end

function is defined as

∇LDDQN
x (θtx)

= ESj ,Aj
x,Rj+1,Sj+1 [(Rj+1 + γmax

a∈A
Q(Sj+1, Ajx, θ̄

t
x) (22)

−Q(Sj , Ajx,θ
t
x))∇θxQ(Sj , Ajx,θ

t
x)],

where the expectation is taken over the minibatch,
which are randomly selected from previous samples
(Sj , Ajx, S

j+1, Rj+1) for j ∈ {t −Mr, ..., t} with Mr being
the replay memory size [29]. When t − Mr is negative,
it represents to include samples from the previous episode.
Furthermore, θ̄t is the target Q-network in DDQN that is used
to estimate the future value of the Q-function in the update
rule, and θ̄t is periodically copied from the current value θt

and kept unchanged for several episodes.
Through calculating the expectation of the selected previous

samples in minibatch and updating the θt by (21), the DDQN
value function Q(s, a,θ) can be obtained. The detailed CMA-
DDQN algorithm is presented in Algorithm 2. We consider
ε-greedy approach to balance exploitation and exploration in
the actor of the Q-Agent, where ε is a positive real number and
ε < 1. In each subframe t, the Q-agent randomly generates a
probability P tε to compare with ε. Then, with the probability ε,

the algorithm randomly chooses an action from the remaining
feasible actions to improve the estimate of the non-greedy
action’s value. With the probability 1−ε, the algorithm exploits
the current knowledge of the Q-value table to choose the action
that maximizes the expected reward.

C. Computational Complexity

The approximate complexity of generating the set of actions
for X agents is O(XSstepNCG), where Sstep represents the
maximum iteration steps and NCG represents the element
number checking and correcting. The training complexity for
X agents, one minibatch of I episodes with T time-steps
until convergence results in computational complexity is of
order O(X2SstepNCGIT ) in training phase. The structures
of the value function approximator can also be specifically
designed for RL agents with sub-tasks of significantly different
complexity. However, there is no such requirement in our
problem, so it will not be considered. DNN is a better value
function approximator due to its efficiency and capability in
solving high complexity problems.

V. SIMULATION RESULTS

In this section, we examine the effectiveness of our proposed
MCG-GF-NOMA system with CMA-DDQN algorithm via
simulation. We adopt the standard network parameters listed
in Table II following [35], and hyperparameters for the DQN
learning algorithm are listed in Table III. Without loss of
generality, in the simulation, we focus on the mini-slots of
Nsym = 7 OFDM symbols for transmissions using 60 kHz
(µ = 2) SCS, which is in line with the main guidelines for
3GPP NR performance evaluations presented in [35].

TABLE II: Simulation Parameters

Parameters Value
Numerology factor µ 2
Number of OFDM symbols in
a slot Nsym

7

Path-loss exponent η 4
Noise power σ2 -132 dBm
Transmission power P 23 dBm
The received SINR threshold
γth

-10 dB

Duration of traffic T 1000 ms
The number of the configured
CTUs for the SCG-GF-NOMA
NCTU,SCG

64

The set of the number of CTUs
NCTU

{8, 16, 24, 32, 40, 48, 56}

The set of the starting slot
Nstart

{0, 1, 2, 3, 4}

The number of static UEs for
low (high) traffic NUE

10000 (50000)

The number of time-frequency
RBs F

4

Cell radius R 10 km
The number of slots within a
subframe Nslot

8



11

TABLE III: Learning Hyperparameters

Hyperparameters Value
Learning rate λRMS 0.0001
Minimum exploration rate ε 0.1
Discount rate γ 0.5
Minibatch size 32
Replay Memory 10000
Target Q-network update frequency 1000

All testing performance results are obtained by averaging
over 1000 episodes. The BS is located at the center of a
circular area with a 10 km radius, and the UEs are randomly
located within the cell. The DQN is set with two hidden layers,
each with 128 ReLU units. In the following, we present our
simulation results of multiple CG configurations in MCG-GF-
NOMA system.
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Fig. 5: The real-time traffic load.

Throughout epoch, each UE has a bursty traffic profile (i.e.,
the time limited Beta profile defined in (4) with parameters
(3, 4), (6, 8) or (30, 40)) that has a peak around the 400th
subframe. The resulting average number of newly generated
packets is shown in Fig. 5, where the dashed line represents
the low traffic (LOW) and the solid line represents the high
traffic (HIGH).

Fig. 6 compares the number of successfully served UEs
for MCG-GF-NOMA and SCG-GF-NOMA systems in low
traffic scenario with parameters Beta(3, 4) and Beta(30, 40),
respectively. Unless otherwise stated, we consider NCG = 5
for the MCG-GF-NOMA system. It is obvious that the MCG-
GF-NOMA can increase the successfully served UEs com-
pared with the SCG-GF-NOMA, especially for the high bursty
traffic peak (Beta(30, 40)), i.e., massive access simultaneously.
Particularly, at the peak traffic, the number of successfully
served UEs in the MCG-GF-NOMA system is circa two times
more than that in the SCG-GF-NOMA system. However, when
the bursty traffic is lower (Beta(3, 4)), this advantage of MCG
is not obvious. This indicates that the MCG solution can
ensure the massive access performance of GF-NOMA in a
massive URLLC scenario.
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Fig. 6: Average number of successfully served users in low
traffic scenario.
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Fig. 7: Average number of successfully served users in high
traffic scenario.

Fig. 7 compares the number of successfully served UEs for
MCG-GF-NOMA and SCG-GF-NOMA systems in high traffic
scenario with parameters Beta(3,4) and Beta(6,8), respectively.
We observe that at the peak traffic with parameter (3, 4), the
number of successfully served UEs in the MCG-GF-NOMA
system is circa four times more than that in the SCG-GF-
NOMA system, while at the peak traffic with parameter (6,
8), the number of successfully served UEs in the MCG-GF-
NOMA system is circa seven times more than that in the
SCG-GF-NOMA system. This is in line with Fig. 6 that
the MCG-GF-NOMA outperform the SCG-GF-NOMA for
massive access scenario. It should be noted that the number
of successfully served UEs for MCG-GF-NOMA with Beta
(6, 8) decreases slightly at the peak traffic compared with that
for MCG-GF-NOMA with Beta (3, 4). It indicates that with
ever-increasing traffic, the ability of MCG-GF-NOMA will be
limited, more efficient solution should be designed.
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Fig. 8: Average latency of successfully served users.

Fig. 8 compares the average latency of successfully served
UEs in MCG-GF-NOMA and SCG-GF-NOMA systems with
both high traffic and low scenarios with parameters Beta(3,
4), respectively. It is obvious that the MCG-GF-NOMA can
decrease the average latency of successfully served UEs com-
pared to the SCG-GF-NOMA, for both the high traffic and low
traffic scenarios. In particular, the MCG-GF-NOMA system
could almost decrease the latency by half compared with that
in the SCG-GF-NOMA system. This indicates that the MCG
solution can ensure the low latency performance of GF-NOMA
in a massive URLLC scenario.
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Fig. 9: Average number of idle CTUs.

Fig. 9 and Fig. 10 compare the average number of idle
and collision CTUs in MCG-GF-NOMA and SCG-GF-NOMA
systems with both high traffic and low traffic scenarios with
parameters Beta(3, 4), respectively. Combining with Fig. 6-
Fig. 8, we observe that the multiple CGs solution can obtain
better reliability and latency performance of MCG-GF-NOMA
only by using smaller CTU resources than the SCG-GF-
NOMA with the single CG, especially for the high traffic

scenario. This is due to the fact that the MCG solution
mitigates the heavy traffic backlog in the SCG-GF-NOMA
system, where multiple UEs are active after the starting slot
offset of one CG will wait for the next CG period to transmit
the packet. Consequently, the collision events are mitigated in
the MCG-GF-NOMA system.
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Fig. 10: Average number of collision CTUs.
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Fig. 11: Average number of successfully served users in
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Fig. 11 and Fig. 12 compare the average number of suc-
cessfully served users and the average latency of successfully
served users in the MCG-GF-NOMA system with high traffic
for different numbers of CGs NCG, respectively. Unless oth-
erwise stated, we consider bursty traffic parameter Beta(3, 4)
for the MCG-GF-NOMA system. We observe that the average
number of successfully served users increases, whereas the
average latency of successfully served users decreases, with
increasing the numbers of CGs NCG. The increased degree
of the average number of successfully served users and the
decreased degree of the average latency of successfully served
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users is largest at the peak traffic around the 400th subframe.
This indicates that more CGs can improve the massive access
performance of GF-NOMA in high traffic regions, which is
in line of the descriptions of MCG-GF-NOMA in Section
I.A. The MCG-GF-NOMA system could mitigate the collision
events when multiple UEs are active and waiting for the CG
period to transmit the packet. It should be noted that both
the increased degree of the average number of successfully
served users and the decreased degree of the average latency of
successfully served users decrease with increasing the numbers
of CGs NCG.
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Fig. 12: Average latency of successfully served users in
MCG-GF-NOMA with different numbers of

configured-grants NCG.
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Fig. 13: Average received reward.

In Fig. 13, we show the system convergence process of
the proposed CMA-DDQN aided MCG-GF-NOMA schemes
by plotting the average reward. It can be intuitively seen that
the proposed framework has a fast convergence speed and the
episode required for system convergence is very small.
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Fig. 14: Action index of the action ACTU in the action set
ACTU for MCG-GF-NOMA with NCG = 2.

Fig. 14 and Fig. 15 plot the action index of the action
ACTU in the action set ACTU and the action Astart in the
action set Astart for MCG-GF-NOMA systems in heavy
traffic scenario with NCG = 2, respectively. According to
the Algorithm 1, we could obtain the action set ACTU =
{[8, 56], [16, 48], [24, 40], [32, 32], [40, 24], [48, 16], [56, 8]}
as well as the action set Astart =
{[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]},
which are sorted by the element in the matrix. In Fig. 14, we
observe that the agent learns to adopt the action with a smaller
number of CTUs for CG 1 and a larger number of CTUs for
CG 2 around the peak traffic, e.g., ACTU = [8, 56]. This is
because the agent in the MCG-GF-NOMA scheme learns to
sacrifice the successful transmission in CG 1 to alleviate the
traffic congestion in CG 2 for heavy traffic regions to obtain
a long-term reward. We also observe that the agent learns to
adopt the action with the same number of CTUs for CG 1
and CG 2 around the low traffic, e.g., ACTU = [32, 32]. This
is because in a low traffic region with less traffic congestion
the agent in the MCG-GF-NOMA scheme learns to guarantee
the successful transmission in both the CG 1 and CG 2.
Similarly, in Fig. 15, the agent learns to adopt the action with
an earlier stating slot for CG 2 around the peak traffic, e.g.,
Astart = [0, 1]. This can guarantee the larger repetition value
in CG2 to get high reliability.

VI. CONCLUSION

In this paper, we proposed a novel MCG-GF-NOMA learn-
ing framework for attaining the long-term successfully served
UEs under the latency constraint in mURLLC service, where
bursty traffic of UEs was considered. We first designed and
modeled the MCG-GF-NOMA system, where we characterize
each CG using the parameters including the number of CTUs,
the starting slot of each CG within a subframe, and the
number of repetitions of each CG. We then characterized and
analyzed the latency and reliability performances for each CG.
We formulated the MCG-GF-NOMA resources configuration
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Fig. 15: Action index of the action Astart in the action set
Astart for MCG-GF-NOMA with NCG = 2.

problem taking into account three constraints: 1) the CTU
resource constraint is set to compare the MCG-GF-NOMA
system with the SCG-GF-NOMA scheme; 2) the latency
constraint is set to satisfy the latency requirement; and 3) the
starting slot constraint is set to support various UL packet
arrival times. Finally, we proposed a CMA-DDQN algorithm
to balance the allocations of resources among MCGs so as
to maximize the number of successful transmissions under
the latency constraint, which breaks down the selection of
high-dimensional parameters into multiple parallel sub-tasks
with a number of DDQN agents cooperatively being trained
to produce each parameter. Our results have shown that the
MCG-GF-NOMA framework can improve the low latency and
high realibity performances in a massive URLLC scenario. In
detail, the number of successfully served UEs in the MCG-GF-
NOMA system is circa four times more than that in the SCG-
GF-NOMA system, and the latency of successfully served UEs
in the MCG-GF-NOMA system is circa half of that in the
SCG-GF-NOMA system in high traffic scenario. Our work
will help to support the 3GPP evolution in terms of 1) the es-
tablishment of the theoretical foundation of MCG transmission
procedure; and 2) PHY and MAC parameters configuration
setup, evaluation, and optimization. Our proposed learning
framework defined the observations, actions, and rewards to
maximize long-term successfully served UEsunder the la-
tency constrain, which can be standardized as the collected
parameters from the environment. From the perspective of
performance improvement, determining the retransmission or
not can be optimized in the future by considering both the
different latency constraints and the future traffic congestion.
Furthermore, a promising future direction is to cooperatively
optimize networks along with the UEs’ key performance in-
dicators (KPIs), such as power consumption and transmission
delay. Such multi-objective optimization is quite challenging
and should be addressed in the future.
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