328 research outputs found

    Hierarchical neural control of human postural balance and bipedal walking in sagittal plane

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 177-192).The cerebrocerebellar system has been known to be a central part in human motion control and execution. However, engineering descriptions of the system, especially in relation to lower body motion, have been very limited. This thesis proposes an integrated hierarchical neural model of sagittal planar human postural balance and biped walking to 1) investigate an explicit mechanism of the cerebrocerebellar and other related neural systems, 2) explain the principles of human postural balancing and biped walking control in terms of the central nervous systems, and 3) provide a biologically inspired framework for the design of humanoid or other biomorphic robot locomotion. The modeling was designed to confirm neurophysiological plausibility and achieve practical simplicity as well. The combination of scheduled long-loop proprioceptive and force feedback represents the cerebrocerebellar system to implement postural balance strategies despite the presence of signal transmission delays and phase lags. The model demonstrates that the postural control can be substantially linear within regions of the kinematic state-space with switching driven by sensed variables.(cont.) A improved and simplified version of the cerebrocerebellar system is combined with the spinal pattern generation to account for human nominal walking and various robustness tasks. The synergy organization of the spinal pattern generation simplifies control of joint actuation. The substantial decoupling of the various neural circuits facilitates generation of modulated behaviors. This thesis suggests that kinematic control with no explicit internal model of body dynamics may be sufficient for those lower body motion tasks and play a common role in postural balance and walking. All simulated performances are evaluated with respect to actual observations of kinematics, electromyogram, etc.by Sungho JoPh.D

    Modeling, Simulation and Control of the Walking of Biped Robotic Devices, Part II: Rectilinear Walking

    Get PDF
    This is the second part of a three-part paper. It extends to the free walking results of a previous work on postural equilibrium of a lower limb exoskeleton for rehabilitation exercises. A classical approach has been adopted to design gait (zero moment point (ZMP), linearized inverted pendulum theory, inverse kinematics obtained through the pseudo-inverse of Jacobian matrices). While several ideas exploited here can be found in other papers of the literature, e.g., whole-body coordination, our contribution is the simplicity of the whole control approach that originates logically from a common root. (1) The approximation of the unilateral foot/feet-ground contacts with non-holonomic constraints leads naturally to a modeling and control design that implements a two-phase switching system. The approach is facilitated by Kane’s method and tools as described in Part I. (2) The Jacobian matrix is used to transfer from the Cartesian to the joint space a greater number of variables for redundancy than the degrees of freedom (DOF). We call it the extended Jacobian matrix. Redundancy and the prioritization of postural tasks is approached with weighted least squares. The singularity of the kinematics when knees are fully extended is solved very simply by fake knee joint velocities. (3) Compliance with the contact and accommodation of the swing foot on an uneven ground, when switching from single to double stance, and the transfer of weight from one foot to the other in double stance are approached by exploiting force/torque expressions returned from the constraints. (4) In the center of gravity (COG)/ZMP loop for equilibrium, an extended estimator, based on the linearized inverted pendulum, is adopted to cope with external force disturbances and unmodeled dynamics. Part II treats rectilinear walking, while Part III discusses turning while walking

    Stable locomotion control of bipedal walking robots : synchronization with neural oscillators and switching control

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (leaves 105-110).Two novel approaches to stable legged locomotion control (neural-oscillator based control and switching control) are studied for achieving bipedal locomotion stability. Postural stability is realized by structural dynamics shaping, and gait stability is achieved by synchronization with neural oscillators and switching control. A biologically inspired control with neural oscillators (central pattern generator, abbreviated as CPG) is used for global stable locomotion of bipeds based on a mutually inhibited neural oscillator model (Matsuoka, 1985). A systematic design approach is studied for the entrainment between the dynamics of neural oscillators and the natural dynamics of the plant (bipedal skeletal dynamics) in the neural oscillator driven rhythmic control. This design can guarantee global dynamic entrainment, bipedal gait stability and system robustness, which are explored and analyzed using nonlinear system theories. The second control approach, called nonlinear switching control, is proposed to achieve stable locomotion control for a bipedal walking robot. This approach applies nonlinear switching control theory in the locomotion control system so as to ensure bipedal gait stability in the stable limit cycle sense. The switching surface is determined by means of the orbital contraction tuning technique. Both the structural dynamics stability and gait stability are analyzed. The convergence of the walking gait is proved based on nonlinear system theory. Two common features for the above control approaches are that a global state machine based switching module and a closed-loop gait stabilization mechanism are used in both control systems. In neural oscillator driven locomotion control, the sensory feedback signals are switched according to the states of global state machine. However, in the switching control, the global state machine is used to select the appropriate control sub-systems in addition to a contraction tuning mechanism. In both approaches, an explicit closed-loop gait control mechanism is implemented to guarantee the bipedal gait stability. Simulations of 2-D and 3-D bipedal walking robots demonstrate the effectiveness of the above locomotion control approaches. Different simulated experiments are given in the system analysis and evaluations. It has been shown that the above two bipedal locomotion control approaches can be further applied in the real-time control of bipedal walking robotic systems with proper locomotion stability and robustness.by Jianjuen J. Hu.Ph.D

    Human-Likeness Indicator for Robot Posture Control and Balance

    Full text link
    Similarly to humans, humanoid robots require posture control and balance to walk and interact with the environment. In this work posture control in perturbed conditions is evaluated as a performance test for humanoid control. A specific performance indicator is proposed: the score is based on the comparison between the body sway of the tested humanoid standing on a moving surface and the sway produced by healthy subjects performing the same experiment. This approach is here oriented to the evaluation of a human-likeness. The measure is tested using a humanoid robot in order to demonstrate a typical usage of the proposed evaluation scheme and an example of how to improve robot control on the basis of such a performance indicator scoreComment: 16 pages, 5 Figures. arXiv admin note: substantial text overlap with arXiv:2110.1439

    Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking

    Get PDF
    Directing the ground reaction forces to a focal point above the centre of mass of the whole body promotes whole body stability in human and animal gaits similar to a physical pendulum. Here we show that this is the case in human hip-flexed walking as well. For all upper body orientations (upright, 25Β°, 50Β°, maximum), the focal point was well above the centre of mass of the whole body, suggesting its general relevance for walking. Deviations of the forces' lines of action from the focal point increased with upper body inclination from 25 to 43 mm root mean square deviation (RMSD). With respect to the upper body in upright gait, the resulting force also passed near a focal point (17 mm RMSD between the net forces' lines of action and focal point), but this point was 18 cm below its centre of mass. While this behaviour mimics an unstable inverted pendulum, it leads to resulting torques of alternating sign in accordance with periodic upper body motion and probably provides for low metabolic cost of upright gait by keeping hip torques small. Stabilization of the upper body is a consequence of other mechanisms, e.g. hip reflexes or muscle preflexes

    Towards postural balance control of exoskeletons

    Get PDF
    Lower-limb wearable exoskeletons have been designed to assist people that have a spinal cord injury during standing and walking. However, because these people generally also have impaired balance, it is difficult, if not impossible for them to operate these exoskeletons without additional supporting aids, such as crutches. Ideally the exoskeleton supports its user’s balance, preferably in a human-like way to match the user's natural intention. Therefore, proper balance control of the exoskeleton is required. This work presents the first steps taken towards postural balance control of lower-limb wearable exoskeletons. The focus is specifically on standing balance control strategies for exoskeletons, inspired by human and humanoid standing balance. The first goal of this thesis was to explore balance control strategies for the application in a lower-limb exoskeletons, with a particular focus on human-like motion generation. In Chapter 2 the ability of the momentum-based controller to generate human-like feet-in-place balance recovery strategies was investigated. Besides feet-in-place balance recovery strategies, people also use a reactive stepping strategy to maintain balance. Therefore, in Chapter 3 it was investigated whether the occurrence of reactive stepping could be predicted using a classification-based method, and what features are most relevant for that prediction.The second goal of this thesis was to verify the effectiveness of exoskeleton balance support. Hence, the effects of an ankle exoskeleton and an ankle-knee exoskeleton on the balance of able-bodied users and (three) users with an incomplete spinal cord injury respectively were assessed in Chapters 4 and 5.By modeling human balance for the use in an exoskeleton on the one hand, and by analyzing and implementing existing balance control strategies on the other, the results presented in this thesis provide insight into how to impose standing balance on exoskeletons and their users.<br/

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (nβ€Š=β€Š3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (β‰ˆ2Γ—) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance
    • …
    corecore