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Abstract

Two novel approaches to stable legged locomotion control (neural-oscillator based
control and switching control) are studied for achieving bipedal locomotion stability.
Postural stability is realized by structural dynamics shaping, and gait stability is
achieved by synchronization with neural oscillators and switching control.

A biologically inspired control with neural oscillators (central pattern generator,
abbreviated as CPG) is used for global stable locomotion of bipeds based on a mutually
inhibited neural oscillator model (Matsuoka, 1985). A systematic design approach is
studied for the entrainment between the dynamics of neural oscillators and the natural
dynamics of the plant (bipedal skeletal dynamics) in the neural oscillator driven
rhythmic control. This design can guarantee global dynamic entrainment, bipedal gait
stability and system robustness, which are explored and analyzed using nonlinear
system theories.

The second control approach, called nonlinear switching control, is proposed to
achieve stable locomotion control for a bipedal walking robot. This approach applies
nonlinear switching control theory in the locomotion control system so as to ensure
bipedal gait stability in the stable limit cycle sense. The switching surface is determined
by means of the orbital contraction tuning technique. Both the structural dynamics
stability and gait stability are analyzed. The convergence of the walking gait is proved
based on nonlinear system theory.

Two common features for the above control approaches are that a global state
machine based switching module and a closed-loop gait stabilization mechanism are
used in both control systems. In neural oscillator driven locomotion control, the sensory
feedback signals are switched according to the states of global state machine. However,
in the switching control, the global state machine is used to select the appropriate
control sub-systems in addition to a contraction tuning mechanism. In both approaches,
an explicit closed-loop gait control mechanism is implemented to guarantee the bipedal
gait stability.



Simulations of 2-D and 3-D bipedal walking robots demonstrate the effectiveness
of the above locomotion control approaches. Different simulated experiments are given
in the system analysis and evaluations. It has been shown that the above two bipedal
locomotion control approaches can be further applied in the real-time control of bipedal
walking robotic systems with proper locomotion stability and robustness.

Thesis Supervisor: Gill A. Pratt
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Study of Bipedal Walking Robot Systems

Engineers and scientists in the robotics field have been working on legged machines for
decades [Todd (1985), Raibert (1986)]. There are two main reasons for studying legged
robots: understanding the locomotion system of the biological counterparts and building
walking machines for travel on rough terrain where existing wheeled vehicles cannot go.

There are a lot of potential applications for legged robots. Some day legged robots
may explore Mars. Legged tanks may be able to maneuver in areas previously
inaccessible to the current treaded variety. Scrambling robot soldiers may maneuver
better than wheeled vehicles in urban landscapes designed for bipedal people. Walking
robots may explore the bottoms of oceans. Bipedal robots of human dimensions will
maneuver in the same areas as people. Artificial robotic legs may enable people with
paralyzed or missing legs to walk and run.

Among legged walking machines, bipedal robots that mimic the bipedal animals
represent an important locomotion system. Today, some researchers are focusing on
understanding how bipedal animals walk, while others are trying to design physical
systems to achieve certain walking tasks. In addition, a complete walking robot system
should be integrated with almost all the technologies available in robotics, such as vision,
arms, and navigation. Compared with other robotic branches, leg locomotion is in need of
the most significant developments.

Many bipedal walking robots have been built since 1974, when the first powered
biped was born [Kato (1974)]. Table 1-1 shows a list of major bipedal walking robots and
their key technologies. Most of them were built for studying locomotion generation. The
Honda humanoid robot [Hirai et al (1998)], which represents the state-of-the-arts in
bipedal robotics, is integrated with modern technologies for vision, robot arms, remote
control, and leg locomotion, and requires forty engineers ten years and tens of millions
dollars to build [Menzel and D’ Aluisio (2000)].

In general, research on bipedal walking robot systems can be classified as 1)
physical-structure design and actuation, 2) locomotion control, 3) advanced performance
enhancement and exploration of systematic behaviors.

e Physical structure design and actuation
Research in this phase requires knowledge of the robot architecture, mechanical
design skills, an understanding of dynamics, and proper actuation. It is now widely



acepted that the minimum number of joints for a bipedal walking robot with
complete set of joints (in hip, knee and ankle) is 6 for a planar biped (Spring Flamingo
etc.) and 12 for a 3-D biped (Honda robot P3 and MIT M2 etc.). Different types of
actuators can be chosen for a given robot system, such as electrical actuators [Pratt
1995, Honda 1996], hydraulic actuators [Kato (1974)], and pneumatic actuators
[Dunn & Howe (1994), Robinson (2000)].

e Locomotion control
A bipedal locomotion control system is responsible for stable walking in a given
environment. It should be capable of starting, stopping, and walking with variable
speeds. Proper posture and stable walking gait are essential.

* Advanced performance enhancement and exploration of system behaviors
Research in this phase targets complex walking tasks. High-level control involving
vision feedback and navigation is studied in this stage. The Honda robot [Hirai
(1998)], in which arms, vision and remote control are integrated with the legged
lower body for possible complex tasks, is an example.

Table 1-1: Historical events of bipedal walking robot systems

When Who What

1974 Kato, Waseda Univ. Wabot, a hydraulically powered biped
with 11 d.of.

1984 Miura & Shimoyana, Tokyo Univ. BIPER-4, Electrically powered biped with
7 d.of.

1985 Takanish et al, Waseda Univ. WL-10RD, Electric actuators with 12 d.o.f.

1990 McGeer, Canada Passive Walker, no actuators, 2-D

1990 Yuan F. Zheng et al, Ohio State Univ. SD-2, Electrically powerd biped with 4
d.o.f.

1994 Dunn & Howe, Harvard Univ. Timmy, 4 d.o.f. 2-D biped with electric
actuators and pneumatic actuators.

1995 Kajita & Tani, Tsukuba, Japan Meltran II, DC motor actuators with 6
d.of.

1996 Honda Motor Company P2, a 12 d.of. biped with electric

actuators. It has arms, head with vision,
remote control

1996 Kun & Thomas, New Hampshire Univ. | Toddler, a 10 d.o.f. biped with DC motor
actuators

1997 Pratt, MIT Leg Lab. Spring Flamingo, a 2-D 6 d.o.f. biped with
electrical actuators

This thesis concentrates on bipedal locomotion control. Our primary interest in
bipedal locomotion control concerns the correct methodology for the control of “complex
systems”. It is difficult to provide a precise definition for this term; by “complex systems”
we mean a system that has an intractable state space and severe nonlinearity. An
intractable state space preludes the use of classic analytical analysis for control systems,



which are only suitable for problems of manageable scale. At the same time, methods of
traditional linear control, which are applicable even when the state spaces are large, are
ruled out by severe nonlinearity.

For a complex system like a bipedal robot, there are a few possible ways to achieve
proper bipedal locomotion control: 1) control with model simplification, 2) control with
distributed local controllers, or 3) complete model-free control assisted with efficient
learning mechanisms. In this thesis the first two strategies are utilized.

e Control with a simplified dynamic model: by capturing the major features of the
bipedal dynamics in different walking phases, a simplified model reduces the
control complexity in practice and turns the original control problem into a new
problem with lower order. However, there is always a trade-off between the degree
of simplification and the system performance. It is not always true that the simpler,
the better.

e Distributed local control: an overall self-organizing mechanism on top of the local
controllers is required for local control. Neural oscillator control and trajectory
control are two examples in this category. The former has a closed-loop self-
organization mechanism, and the latter has the coordination moderated in the
trajectory planning process.

e Model-free control with learning capability: The control complexity is shifted to the
learning process. Complete model-free control approaches require a tremendous
amount of learning time, which is usually impossible for real-time implementations.

1.2 Difficulties in Achieving Stable Bipedal Walking

Although stable bipedal locomotion is a difficult control task, it has been a research goal
for about a century. Many successful attempts have been made so far. However, due to
the difficulties in actuation and control, the robots developed thus far can execute some
simple tasks, but their performance is still far below the level of their biological
counterparts. Table 1-2 lists the difficulties in the research of bipedal walking robot.

Besides the difficulty in hardware, the extent of control difficulty is illustrated by the
limited progress gained in bipedal control systems. A few approaches have been studied
extensively in the bipedal walking robot area. The first approach, trajectory control, was
used successfully in Honda’s robot, where necessary modifications were made to the
control on-line. Distributed local control and simplified dynamics based control
approaches are also efficient ways to control biped walking. In the early days, the major
goal of researchers was initially to understand how to generate bipedal locomotion with
physical robotic systems, where system stability was partially achieved through some
local adjustments inside the control systems.

The dynamics of bipedal locomotion is indeed difficult. The nonlinear dynamics,
high dimensional dynamic state space, time variations, and impulse disturbances from
environments (like ground contacts) make direct application of modern control theory
extremely difficult. For example, a biped experiences two different dynamics phases
(single support phase and double support phase) alternatively. In single support, the



biped dynamics are unstable and not entirely reachable (or controllable in a linearized
form); in double support state, however the dynamics are constrained with redundant
structures and fully controllable and stable. In order to achieve stable waling, the control
method must merge the two alternatively changing walking phases together and
stabilizes the walking sequences.

Table 1-2: Difficulties in the research of bipedal walking robot

Key Technologies Difficulties in Research
Actuator Limited bandwidth and transmission constraints
Robot structure Rigid body, no flexibility
Sensory system Limited sensory information used, i.e. velocity, position, force
Control system Nonlinear, high dimensional, time varying dynamics;
Not fully actuated in ankle joints

In practice, researchers usually mix the locomotion generation task with the
locomotion stabilization process, which makes the control system very difficult to
implement and makes the control problem ill-posed (i.e. not well defined in a standard
framework). Separating the task into two steps (as shown in Figure 1-1) and conquering
them separately maybe a better strategy.

Step 1

Locomotion Biped
Generator > Robot

\

Step 2
Stabilization
Mechanism

1

Figure 1-1: Bipedal locomotion control task decomposition

1.3 Closed-loop Locomotion Control

Feedback closed-loop control thrived in the 20th century, starting with Norbert Wiener's
cybernetic study of control system mechanisms [Wiener 1948]. It has been clearly
demonstrated that closed-loop control is better than open loop control not only in control
accuracy but also in the robustness built into the closed-loop, which is capable of rejecting
any noises and disturbances in the loop.

The same is true for bipedal locomotion control system. It has been observed that a
bipedal walking robot controlled by distributed local controllers can walk stably under
certain conditions if the control parameters are tuned well, which means that a good open
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loop control system is made. However, the biped may fall down when disturbances occur
or walking conditions change. This may be the reason why successful live demonstration
of stable bipedal walking is so difficult to assure.

Limited success has been achieved in a number of bipedal walking robots, such as
the Honda humanoid robot, Spring Flamingo and WABIAN etc. In those systems, local
reactive control schemes are added to the control systems for enhancing the gait stability.
Goswami et al (1996) demonstrated that with necessary additional control adjustments, a
passive biped could achieve a stable gait, indicating that a closed-loop gait control
mechanism can enhance bipedal locomotion stability.

Gait .| Locomotion - Biped ,
"1 Stabilization 71 Generation > Robot > Environment
1 Inner Loop
Outer Loop Gait P
Observer |~

Figure 1-2: Diagram for closed-loop gait control of a bipedal walking robot.

Figure 1-2 shows a general closed-loop gait control system structure for stable
bipedal walking control. In the inner loop, the structure dynamics are controlled so that
postural stability is reached. In addition, the basic bipedal locomotion should be
generated in the inner control loop using either distributed local control or overall
trajectory control. The outer loop, i.e. the closed-loop, gait control is designed such that
the gait stability is realized.

1.4 Approaches

Two control approaches are developed in the thesis: neural oscillator driven control and
switching control. Both control approaches have an explicit closed-loop gait control in the
system framework, which is intended to stabilize the bipedal locomotion.

1.4.1 Control with Neural Oscillators
With neural oscillators, the bipedal locomotion is generated by the oscillator outputs and
the local impedance controllers and stabilized through the entrainment between the

neural dynamics and the biped skeletal dynamics. The architecture of the neural oscillator
modules and appropriate implementation of local joint control are crucial in the system.
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There is no general framework or systematic control guidelines available to ensure the
entrainment will take place. Therefore, the conditions of entrainment for essential neural
oscillator modules, how to select sensory information to feedback to the neural oscillators,
and how to establish locomotion, are important issues, and are investigated in this thesis.

Neural oscillator driven bipedal locomotion control is different from other
applications of neural oscillators, such as arm control, where the dynamics are fixed and
direct entrainment of neuro-dynamics and plant natural dynamics is easier to achieve
[Williamson (199b)]. However, in the case of bipedal locomotion control, the neural
oscillator control system is responsible for generating locomotion and stabilization as
well. The dynamics changes in bipedal walking not only make the dynamic analysis
difficult but also make the entrainment difficult to achieve.

This thesis starts from the fundamental analysis of a neural oscillator module
(modified from Matsuoka’s oscillator model) and a general rhythmic control system. A
compensator based neural oscillator control scheme is proposed for general rhythmic
motion control. A distributed neural oscillator network is formed, and the entrainment of
neuro-dynamics and natural skeletal dynamics is demonstrated by means of a simulated
bipedal walking robot.

Figure 1-3 shows a general structure for such a control system with closed-loop gait
control. The details of the realization of the components described in the diagram (Figure
1-3) can be found in Chapter 6. In this system structure, the basic legged locomotion is
generated by means of rhythmic controllers and local impedance control. The former
governs the rhythmic motion, and the latter controls the robot posture. Closed-loop gait
control is achieved through the sensory feedback and the entrainment of the neural
dynamics and robot skeletal dynamics.

Locomotion |
Generation Impedance
Control
Ne_ural .| Rhythmic > Biped » Evoi ;
> Oscillator > Controllers > Robot > nuironmen
Network
Sensory
Feedback

Figure 1-3: Neural oscillator based closed-loop control.
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1.4.2 Switching Control

The second active locomotion control approach, i.e. nonlinear switching control, is
Motivated by the switching nature of structural dynamics. It can be used to achieve gait
stability. In this control approach, we used different control sub-systems for the double
support and single support phases. An orbital contraction tuning technique is used to
choose the state dependent switching surfaces. Using nonlinear control theory we prove
that, with an appropriate switching control mechanism, stable rhythmic motion (or
periodic gait stability) can be achieved by means of switching between stable local
dynamics and unstable local dynamics.

With the switching control approach, the control target is divided into two parts:
constructing bipedal locomotion with local controllers and stabilizing the bipedal
locomotion. Separate local controllers are designed for the double support phase and the
single support phase, and an outer closed-loop gait control is added to the system for
stabilizing overall bipedal locomotion. This control approach is analyzed with nonlinear
theory and the gait stability is proved by means of limit cycle analysis.

In the nonlinear switching control approach, the switching techniques are used to
select control sub-systems and to realize the global synchronization of sub-dynamics. The
switching modules are in the outer closed-loop (for the switching control approach).
Figure 1-4 shows such a general closed loop gait control mechanism.

Locomotion Generation

v

Switching
Control

A

\ 4

Gait Local . Biped )
M Stabilization ™ Controllers Robot ~ Environment

\d

Y

Gait
Observer [€

Figure 1-4: Closed-loop gait control with switching module.
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1.5 Simulated Systems

To evaluate the experimental control performance of the two approaches, two bipedal
robots are simulated. Different control approaches are applied in each robot. The robotic
simulations are implemented using the Creature Library, a software package developed
at the MIT Leg Lab, and based on the SD-FAST product of Symbolic Dynamics. Figure 1-5
shows the real robots and Figure 1-6 shows the simulated robots.

The first simulated robot is the simulation of an existing physical robot called Spring
Flamingo, built by Jerry Pratt (Leg Lab., MIT) [Menzel and D’Aluisio (2000)]. This planar
robot is constrained to the sagittal plane, i.e., no lateral motion is allowed. It has seven
links: thigh, shin, and foot in each leg and a body link. There are six joint actuators for the
hip, knee, and ankle in each leg. The robot has a height of 1.2 m and a weight of about 14
kg.

The second robot simulated is based on another 3-D bipedal walking robot, M2,
which was assembled in the Spring of 2000 and is currently undergoing development of
its control algorithms. M2 has a total of 12 degrees-of-freedom (d.o.f.): three d.o.f. at the
hip joint (pitch, roll, yaw), one at the knee joint (pitch) and two at the ankle joint (pitch
and roll) in each leg. It has a height of 1.5m and a weight of about 27 kg.

Both bipedal robots are designed mainly for studying bipedal locomotion control
algorithms. There are no vision systems or arms on either robot. Hence the motion of the
upper body is not included, and only blind walking is considered. A series of experiments
are simulated for investigating legged locomotion stability and robustness under the new
control approaches.

Spring Flamingo

(Courtesy of Jerry Pratt) (Courtesy of Daniel Paluska)

Figure 1-5: Bipedal Walking Robots: A planar biped, Spring Flamingo, on
the left; a 3-D biped, M2, on the right.

14



Simulated Spring Flamingo Simulated M2
Figure 1-4: Simulated robots: Spring Flamingo, on the left; Simulated M2 on
the right.

1.6 Thesis contributions

This thesis focuses on stable locomotion control of bipedal walking robots. The following
contributions are made in stable bipedal locomotion control: 1) the stability and
robustness of bipedal locomotion is studied with system theory, and 2) a few
mechanisms are developed to achieve stable bipedal control.

The significance of this thesis is that the two control approaches developed will

contribute to the understanding of bipedal locomotion and motor-sensory control, and
also they can provide systematic control schemes for walking robotic system, in which
the control design process is simplified.

(@)

(b)

(d)

Neural oscillator based locomotion control. A design method for neural oscillators
based locomotion control is developed with local dynamics shaping and
appropriate sensory feedback. This is realized as a global state based switching
scheme. A systematic analysis of neuro-skeletal dynamics in a bipedal walking
robot is provided. The intrinsic robustness of neural dynamics is achieved by means
of the dynamics entrainment in bipedal robots.

Nonlinear switching control. A contraction tuning based switching control
approach can achieve gait stability for a bipedal walking robot. The proof of the
existence of a limit cycle is provided by means of nonlinear system theory,
contraction control.

Control applications in a simulated planar bipedal walking robot, Spring Flamingo
and a 3-D biped, M2. Both neural-oscillator control and switching control
approaches are applied in the simulated biped, Spring Flamingo. The switching
control is also applied in the 3-D biped, M2 in a task of stepping in place.
Analytic tools have been applied to help the control design and analysis.

15



1.7 Organization of the Thesis

This rest of thesis is organized as follows: Chapter 2 reviews the methods previously
developed for bipedal locomotion control, such as simplified model based control,
passive dynamic control, trajectory planning based control, and biologically inspired
control approach. A new concept of closed-loop gait control is proposed in this chapter.
In Chapter 3, mathematical background for nonlinear system analysis is introduced.
Preliminary theories, like linearization, limit cycle, piece-wise linear analysis, Poincar’e
map, and orbital contraction theory are described. Chapter 4 defines stability and
robustness in bipedal locomotion control and describes the guidelines for the control
system design in the thesis. Dynamic models are introduced, and the controllability and
observability are analyzed in this chapter. Chapter 5 presents and compares a few
oscillator models. With Matsuoka’s neural oscillator model, the general entrainment
conditions for rhythmic motion control are discussed. Chapter 6 extends the study of
neural oscillator control to bipedal locomotion. One global variable based switching
scheme is proposed for the sensory information feedback during the entrainment process
of the bipedal locomotion. Chapter 7 proposes a nonlinear switching control method for
achieving stable bipedal walking. The proof of existence of a limit cycle is provided in this
chapter. Chapter 8 describes the applications of switching control to 3-D bipedal walking
robots. Methods for dealing with frontal plane dynamics and the synchronization of
frontal dynamics and sagittal dynamics are given. The simulation results for a 3-D
bipedal robot, M2, are presented. Chapter 9 summarizes the research in the thesis. A few
discussions are also presented for further improvements. The perspectives of the future
study in both neuro-dynamics of the bipedal walking robots and the switching control are
described briefly.

16



Chapter 2

Review of Bipedal Locomotion
Control

This chapter is devoted to a literature review of studies on bipedal locomotion control.
Several main control approaches used in the past are reviewed and discussed, and the
current status of bipedal locomotion control is addressed.

2.1 Control with Simplified Models

Since biped mechanical systems usually have high order and nonlinear, complex
dynamics, it is a very hard task to design controllers for the joint actuators with full
consideration of the entire biped system dynamics. In addition, from a mechanical point
of view, a biped robot is inherently unstable because the center of mass extends beyond
the base of support most of the time during walking.

For such a complex system, the control engineers’ dilemma is how to make a
suitable trade-off between the simplification of the system model and control precision. In
walking machine design, there are two different approaches to controller design in
current use. One approach is to design effective controllers based on some approximation
of the dynamics of the bipedal mechanical system. The other approach, called model-free
control design in this thesis, aims to make use of the control engineer’s experience,
intuition, as well as several learning techniques [Pratt (1996), Murakami (1995), Miller
(1994), Hu (1998)].

One of the common features of the control approaches developed by researchers is
that controllers of bipeds were designed based on approximations of the bipedal
mechanical system. In the early days of 1970s, the simplest model used for the study of
some of the characteristics of human walking was the inverted pendulum model. For
example, Hemami et al used the inverted pendulum model to investigate biped stability
in 1977 [Golliday & Hemami (1977)]. For control design, Golliday and Hemami used state
feedback to decouple the high-order system of a biped into independent low-order
subsystems. More complex models with more degrees of freedom were used mainly after
1980 for a more complete study of human walking (or other bipedal animals) as well as
for the actual construction of biped robotic systems. Miyazaki and Arimoto (1980) used a
singular perturbation technique and showed that bipedal locomotion can be divided into
two modes, a fast mode and a slow mode, thus simplifying the controller design. Furusho
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and Masubuchi (1987) derived a reduced order model as a dominant subsystem that
approximates the original high-order model very well by applying local feedback control
to each joint of a biped robot. Raibert (1986) used symmetry to analyze hopping robots
controlled using “three part control”. Miura and Shimoyama (1984) linearized the biped
dynamics and designed stable controllers by means of linear feedback. Kajita and Tani
(1995) developed their 6 d.of. bipedal robot “Meltran II” using a “Linear Inverted
Pendulum Mode” successfully. In the above research, the dynamics of the biped robots
were simplified so as to utilize the existing modern control theory in the controller design.
In contrast, the model-free control approach does not incorporate the complex
intrinsic dynamics of the biped robot system in the controller design. This type of
approach avoids dealing with the complex dynamics directly and, instead, tries to
incorporate the control engineer’s intuition, experience, and knowledge into the control
system design. Pratt (1996, 1997) developed virtual model control, by which one can
achieve good control capability for bipedal walking robots through appropriate choice of
virtual components in virtual space. In addition, other researchers have made good
progress in control of biped robots by means of learning techniques such as reinforcement
learning [Benbrahim (1997), Chew (2000)] and neural network control (Miller 1994, Hu
1998, 1999). For robustness and adaptation enhancement, Radial Basis Function neural
networks, CMAC neural networks and Multi-Layer Perceptrons with back propagation
successfully improved the performance of bipedal walking in gait control [Salatian &
Zheng (1992)], dynamics compensation [Hu (1998b)] and posture balance [Miller (1994)].

2.2 Passive Dynamic Walking

Studies of passive dynamic walking demonstrated the physical nature of bipedal
locomotion with simplified mechanical structure. These studies gave insight into how
powered bipedal walking robots can be improved in terms of energy efficiency and
control stability [McGeer (1990), Goswami (1996), Van der linde (1999), Kuo (1999)].
McGeer (1990), a pioneer in passive bipedal walking, explored the important features of
passive bipeds. His simple kneeless passive biped robot, which moved passively on an
inclined plane, attained a stable periodic motion, following a linearized mathematical
model.

With a simplified bipedal dynamic model, Goswami (1996) analyzed and
demonstrated numerically that gait stability for a passive walking robot can be achieved
in terms of a limit cycle with some control adjustments. Similarly, Van der Linde (1999)
demonstrated that a limit cycle can be constructed by means of a simple passive
parameter adjustment in the structure. In their analysis, both researchers assumed a
special case, in which the robot only experiences single support states. The work in Kuo’s
group presented a simple control scheme in stabilizing the lateral dynamics of a 3-D
passive biped model.

The above studies on passive walking inspired the idea of an active switching
control approach for the powered robot in this thesis. An explicit closed loop control
scheme is proposed to achieve bipedal gait stability in the limit cycle sense, which is
described in Chapter 7.
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2.3 Trajectory Planning Based Control

Trajectory planning based control was an early approach to bipedal locomotion control
which started in 1980s (Vukobratovic, 1990). Basically this approach assumed that the
nominal trajectories of the joints are well generated for proper bipedal locomotion. Then
the control task was simplified in a multi-input-multi-output (MIMO) control framework
so that some modern control theory can be applied with further manipulations.

However this approach does not work successfully in practice for two reasons. First,
the real dynamics are changing, and controller designs based on the nominal dynamics
would have degraded performance when interacting with the environment. Second, this
is open-loop control only. Real-time modifications are needed in order for this approach
to succeed in a practical robot.

Honda’s robots used this approach enhanced with Zero-moment-point (ZMP)
modifications of the nominal trajectories, recorded from human walking. The control
approach used in the Honda Humanoid robots is called a ‘play-back’ approach in the
robotics field. Pre-recorded data is also used in Waseda univeristy’s humanoid robot,
WABIAN. Again the control is augmented with the ZMP approach. These robots
achieved some success in stable walking. However, in the above robot systems, there is
no explicit closed loop control mechanism for gait stability. Local modifications to the
trajectories turned out to be an indirect adjustment, but not to guarantee stability. A
stronger control mechanism is needed for stable walking.

2.4 Biologically Inspired Control Approach

A biologically inspired locomotion control approach, neural oscillator driven control, is
now drawing the attention of researchers in bipedal walking with the promise of
enhancing locomotion stability and robustness and reducing the difficulty of tuning
system parameters. About two decades ago, biologists found evidence that both reactive
control and central pattern generators exist in vertebrates, and the feedback loop that
generates the motor patterns is closed by internal state variables and is interacted with the
environment [Grillner (1976,1985)]. The lower level dynamic control is governed by the
neural circuits in the spinal cord rather than in the brain. But these spinal cord neural
circuits are also affected by inputs from higher level control systems. Katoh et al (1984)
began applying stable limit cycles in bipedal locomotion. In studies of neural pattern
generators, Matsuoka’s mutually inhibited oscillators [Matsuoka (1985)] and Bay and
Hemami's coupled nonlinear oscillators [Bay & Hemami (1987)] are two typical models
from the 1980s. Based on Matsuoka’s model, Taga (1995) studied the entrainment
between the dynamics of a group of neural oscillators and investigated the rhythmic
movements of a simulated musculo-skeletal system. Recently, Miyakoshi et al (1998)
attempted to apply the neural oscillator approach to control the stepping motions of a
simulated bipedal robot.

The approach used in the simulated human walking control by Taga (1995) is a
biologically inspired control approach, which constructs the system synergy for a bipedal
walking robot based on the biological motor-sensory control theory. Taga (1995) has
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addressed this in his neural oscillator driven humanoid-legged locomotion simulations.
With neural oscillators one can generate a nonlinear limit cycle oscillation process to
accomplish bipedal walking [Miyakoshi (1998)].

The sensory feedback provides a closed-loop control for achieving the overall gait
stability of the bipedal locomotion. Carefully selected sensory feedback signals are input
to the neural oscillators, and the entrainment between the neural dynamics and the
skeletal dynamics makes the bipedal gait stabilized in the sense of limit cycle.

To date, most research on the neural oscillator approach has focused on the neural
oscillator models and simulation results. Yet, theoretical studies on how to systematically
design locomotion control using neural oscillator models have not appeared, and a
mechanical bipedal walking robot using neural oscillator models has not been produced.
This thesis develops a neural oscillator driven control system for a bipedal walking robot.

2.5 Stabilizing Bipedal Locomotion

An important goal of bipedal locomotion is the control of a biped to achieve stable
walking. The concept of system stability from conventional control theory needs to be
extended in bipedal locomotion control since the desired tracking is no longer the
primary control goal. To realize natural bipedal walking, a biped should not fall down,
and it should walk at a stable pace. In other words, stable postural control and stable gait
control should be achieved. Many researchers have studied postural control and how a
stable posture can be realized. Zero Moment Point (ZMP) has become an important and
useful criterion for postural stability in walking robot control. The ZMP control approach
has been used to monitor postural stability during walking trajectory planning or
trajectory modifications, as with the Honda humanoid robots [Hirai (1998), Ozawa (1995)]
and the WABIAN robots [Yamaguchi (1999)]. On the other hand, stable periodic walking
gait control was not the focus in the past years, and the systematic study of this topic is
hardly found in the literature on biped control. Without an embedded mechanism to
ensure gait stability, the biped may lose its walking pace or exhibit chaotic behavior when
it encounters disturbances from environments. A few researchers have addressed this
topic in passive walking [Goswami (1996), Van der Linde (1999)]. The majority of studies
on gait control were on gait modification and implementation with different terrains [Kun
& Miller (1999), Salatian & Zheng (1992)].

Gait stability is crucial for the global stability of locomotion. If the walking gait
diverges or is not stabilized, bipedal walking will break down and stable locomotion will
be lost. In his study of gait stability, Vukobratovic (1973, 1990) proposed a repeatability
condition that is required for the stability of a periodic gait.

A closed-loop control system may enhance gait stability. Two such control systems,
neural oscillator control and switching control, are described in Chapters 6 and 7,
respectively.
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2.6 Summary

In the above sections, previous locomotion control approaches are reviewed. As two of
the most widely studied approaches, simplified dynamics model based control and
trajectory planning based control, represent the early locomotion control research, which
played an important role in bipedal locomotion study. Both approaches were used in
control of the biped prototypes developed in 1980s and 1990s.

Passive dynamic walking helped researchers in understanding the necessary
fundamental dynamic mechanism that is required for bipedal locomotion, which
simplified the dynamics analysis and gave a lower bound in terms of energy
consumption. The results in passive walking can help researchers in improving robot
structure design and enhance powered robot control.

The neural oscillators driven control approach provides an elegant system control
paradigm. It potentially has broad system capabilities, but further developments and
studies are required in order to discover efficient mechanisms and to provide better
analysis of its system behaviors.

A closed-loop gait stabilization approach is proposed in this chapter for the purpose
of achieving stable locomotion. Two system frameworks are presented: neural oscillator
driven control and switching control, which are rational options in control viewpoints.
The use of these frameworks for control of bipedal walking, as presented in Chapters 6
and 7, is the major contributions of this thesis.
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Chapter 3

Analysis of Nonlinear Systems

This chapter presents the necessary mathematics background for this thesis, including the
linearization of nonlinear systems, orbital contraction, piece-wise linear analysis and the
Poincare map. We will utilize these tools to analyze the control of the complex, nonlinear
dynamics of bipedal robots. Additional references on these topics can be found in the
literature [(Khalil (1996), Guckenheimer (1983), Hayashi (1985), Vidyasagar (1993)].

3.1 Linearization of Nonlinear Systems

3.1.1 Nonlinear dynamic systems

Consider a physical system with state variable x and input variable u defined as,
) =@ 5@ - 5@O), xeR".
u® =@ w© - 0,0f ueRr”

We assume the system’s behavior can be characterized by the coupled first-order
ordinary differential equations

X = filxu,t) i=12:-n (3-1)

where X, denotes the derivative of x; with respect to the time variable ¢. The system

starts at time ¢ = ¢, with initial state x(7,). The system output equation is:
¥ = h(x,ut) (3-2)

which defines a g-dimensional output vector comprised of variables of particular interest
in the analysis of the dynamic system, such as, variables which can be physically
measured. Equations (3-1) and (3-2) are called the state-space model of the system. In

general, f=(f; f, -+ f,) and k are nonlinear functions of the state variable x and

input u .
In a closed-loop system, a control law u(t) = g(x(¢),t) is chosen. Thus, the closed-
loop dynamics can be written as
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x=f(x1). (3-3)
A special case of (3-3) is when the function f does not depend explicitly on ¢, that is,
x=f(x) (3-4)

In this case, the system is said to be autonomous or time-invariant.
3.1.2 Equilibrium points

An equilibrium point, or stationary solution to a dynamic system, is a very important

concept for analysis of the local properties of a nonlinear dynamic system. A point x  in
the state space is said to be an equilibrium point of (3-4) if it satisfies the
equation f(x") =0. An equilibrium point can be isolated (that is, there are no other
equilibrium points in its vicinity) or can be part of a continuum of equilibrium points
[Dahleh (1996)].

Equilibrium points can be characterized as stable, unstable, or asymptotically stable
in the sense of Lyapunov (i.s.L.).

Definition 3.1 The equilibrium point x" of (3-4) is
o stable i.s.L. if, for each £> 0, thereis a o = 5(&) > 0 such that

Ix(0)—x"[<6 = || x(E)—x||<&, V=0

e unstable if it is not stable;
» asymptotically stable i.s.L. if it is stable, and o can be chosen such that

[x(0)-x"|<& = lim x() = x
e globally asymptotically stable i.s.L. if it is stable and, for any x(0),
x(®)=x"

lim

f—a0
3.1.3 Linearization

Suppose we have an equilibrium point or an operating point X for the nonlinear system
(3-4), such that f(X)=0. By linearizing (3-4) we can characterize the system behavior or

the solutions near X . The linearized system is expressed as
X =Df(¥)%, ¥eR" (3-5)
where Df =[8f,/dx,] is the Jacobian matrix of first partial derivatives of the function

f=(f £, - f,),and x=X+%, |¥|<<1. In particular, the linearized flow map
D®,(x)x ata fixed point X is obtained from (3-5) by integration:

DO (X)X =7 O% (3-6)

24



In general, equations (3-1) and (3-2) can be linearized as

X =Ax+ Bu (3-7)
y=Cx+Du (3-8)

If A is Hurwitz, i.e. A has all eigenvalues in the left half plane (LHP), the fixed point X is
said to be stable. Otherwise, it is said to be unstable. If X is stable and there are no
eigenvalues on the imaginary axis, X is asymptotically stable.

3.2 Periodic Behavior of Nonlinear Systems

The following sections introduce the concepts that are used in this thesis for nonlinear
system analysis and system control design. More details can be found in books [Khalil,
(1996), Guckenheim (1983)] and the literature [Gongalves (2000)].

3.2.1 Piece-wise linear analysis

There is a class of nonlinear systems that is composed of linear sub-systems and nonlinear
components, such as saturation, threshold, relay feedback, etc, where the nonlinearity is
in fact piece-wise linear. We call those systems piece-wise linear systems. The obvious
advantage of this type of system is that the linear system theory can be applied in local
regions where the dynamics equations of the system are linear.

A piece-wise linear system can have periodic solutions; these are called limit cycles.
Piece-wise linear analysis will be used in the neural oscillator control of Chapter 5.

Definition 3.2 A piece-wise linear system (PLS) is characterized by a set of affine
linear systems
x=Ax+B,u (3-9)

where x € R" is the state, and
a(x)efl,.,. M} (3-10)

which indicates the switching rules used in the system.

a(x) usually is a piece-wise constant which depends on the state x and possibly on

the past values of x. We defining t as a switching time of a solution of (3-9) and (3-10) if a is
discontinuous at t. Equivalently, we say that a trajectory of (3-9) and (3-10) switches at
some time t if ¢ is a switching time.

In the state space, switching occurs at switching surfaces consisting of hyperplanes
of dimension » -1

S, ={x|Cix+d; =0} (3-11)

where j={l,...,N}.
The switching rule may or may not be memory-less. In some cases, the value of «
depends only on the current state, as in linear systems with saturating inputs. In other
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cases, the value of a also depends on the past values of the state (or on past values of a),
as with relays having hysteresis.
When the switching rule has no memory, where the switching depends only on the

present state x, the state space R” is partitioned into M (possibly unbounded) sets called
cells. In each cell i, given by {x|a(x) =i}, the system dynamics are governed by the affine

system x = Ax+ Bu . Figure 3-1 shows a piece-wise linear system with two switching
surfaces and four partitioned sets or cells.

x=A,x+Byu

Figure 3-1: A piece-wise linear system with a memoryless switching rule

3.2.2 Limit Cycle

Periodic oscillation is one of the most important phenomena that occur in nonlinear
dynamic systems. A system oscillates when it has a nontrivial periodic solution

x(t+t)=x(t), forall t 20, (3-12)

for some ¢ 20 (the period of the oscillation). The word “nontrivial” is used to exclude
constant solutions corresponding to isolated equilibrium points. The image set of a
periodic solution in the state space is a closed trajectory that is usually called a periodic
orbit or a closed orbit. Limit cycles are special cases of the closed trajectories of system. A
limit cycle is defined as an isolated closed curve. That is, the trajectory has to be both
closed (indicating the periodic nature of the motion) and isolated (indicating the limiting
nature of the cycle that attracts and/or repels nearby trajectories). Thus, while there may
exist many closed trajectories in the state space, only those that are isolated are called
limit cycles.

Although linear systems may have closed trajectories, these trajectories are never
isolated. Limit cycles are inherent properties of nonlinear systems. The analysis of limit
cycles is difficult since no linear theory can be applied directly. Recent results in limit
cycles analysis [Gongalves (2000), Johansson (1996)], which are based on piece-wise linear
systems have been applied in the nonlinear analysis of bipedal locomotion control and
neural oscillators.
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As continuum equilibrium points, limit cycles can be characterized as stable,
unstable, or asymptotically stable. Let #(¢f) be a nontrivial periodic solution of the

autonomous system (3-4) with period ¢, and let y be the closed orbit (limit cycle) given
by the image set of #(¢) in the state space, that is,

y={xeR"|x=g(),0<t<t"} (3-13)
We define a e-neighborhood of limit cycle y as,

U, ={xeR"|dist(x,y) < &} (3-14)
where dist(x,y) is the minimum distance from x to a point in v, that is,

dist(x,y)=1nf | x~y| (3-15)

Then the stability of a limit cycle can be defined as follows.

Definition 3.3 The limit cycle y of system (3-4) is
¢ stable if, for £>0, there is a §>0 such that

x(0)elU; = x(t)eU,, Vt20.
» asymptotically stable if it is stable and & can be chosen such that

x(0)eU; = }imdist(x(t), 7)=0.

» globally asymptotically stable if it is stable and, for any x(0)
limdist(x(t),7)=0.
t—>o0

We now wish to discuss the existence of limit cycles. Suppose a nonlinear system
(3-1) can be formulated as a piece-wise linear system as (3-9) and (3-10), and it has a limit

cycle y with period f°, and that this limit cycle crosses k switching surfaces (S,
ie{l,2,-,k}) per cycle. For simplicity, assume the trajectory of the limit cycle evolves

consecutively from system 1 to system 2, and so on until it reaches system k, and finally,
after completing one cycle, returns to system 1. Assume also that the switching surfaces
are ordered the same way (see Figure 3-2). Then the trajectory #(¢) of the limit cycle

starting at x, €S, satisfies @(f)=x €S,. System 2 is switched on until
1 +t,)=x,€S8,, and so on. The k" linear system takes the trajectory ¢(¢) from
X, €S8, to the point x,e8,, ie, @ +t,+--+t;)=x, =x,€8,. Note that
{ =t +t,+---+1t,. Then the existence condition of a limit cycle can be derived in the
following way: first considering every switching surface (S;), and computing the state
x; €S, (by expressing it with the transition time ¢, , t,,...,t;), then using the switching

surface equation to find the condition on §;,, which can be formulated as
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g,(4; ,1;,-,t;) = 0. For more details, the reader can refer to [Astrom (1995), Gongalves
(1999)].

System k

System 1

System 2

Figure 3-2: Limit cycle y

The local stability of limit cycle for a PLS (3-9) and (3-10) can be analyzed in the
following way. Assume there exists a periodic solution y with period ¢". Let x, € S, be
the initial state that generates the periodic motion. Consider the map T from a point in a
small neighborhood of x; in S, to the point where the trajectory returns to S, . The local

stability of a limit cycle can be checked by looking at the poles of the linear part of map T.
Stability follows if the poles are inside the unit disk. The following proposition gives
conditions for the local stability of a limit cycle of the PLS (Amstrom 1998, Goncal 1999).

Proposition 3.1 Consider the PLS (3-9)~(3-10). Assume there exists a limit cycle y with
period t" as described above. Assume also that the limit cycle is transversal to the switching
surfaces S,, ..., S, at x,, ..., x,, respectively. The Jacobian of the map T defined above is

givenby W =W, W,_, --- W,W, where

W, = (1 - 20y, (3-16)
with v, = A4x, + Bu, i=1,...k. The limit cycle y is locally stable if W has all its

eigenvalues inside the unit disk. It is unstable if at least one of the eigenvalues of W is outside
the unit disk.

3.2.3 Poincare map
A Poincare map can be applied to prove that system trajectories converge to a limit

cycle. We assume that a hyperplane H (H is n-1 dimensional provided that the system is n
dimensional) is transversal to a periodic orbit y (see Figure 3-3). Let p be a point on » and

H.
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H={x|a"(x-p)=0}, acR” (3-17)
Nonlinear system:  x= f(x,¢), xe R". (3-18)

Let W,ScHand peW cS§. The Poincare map g:S —>W is defined for a point
xeScH by

g(x) = P(z,x) (3-19)

where ®(z,x) is the solution of (3-18) that starts at x at time +=0 and 7= 7(x) is the
time taken for the trajectory starting at x to first return to W. Suppose we start at x(0) on

S, with a Poincare map, we can have a sequence, x©@, XV, X Therefore, a
discrete-time system is defined as,
x4 = g(x®). (3-20)

Figure 3-3: An example for Poincare map.

If we can prove the above discrete-time system has contraction mapping property
[Khalil (1996)], we can say that p is a stable equilibrium point on H, and y is a stable limit

cycle.

3.3 Contraction Theory

We shall now extend the concepts of stability of limit cycles to the definitions of orbital
stability of a nontrivial periodic solution #(t) of system (3-4).

Definition 3.4 A nontrivial periodic solution ¢(¢) is

» orbitally stable if the limit cycle  generated by ¢(¢) is stable.

* asymptotically orbitally stable if the limit cycle y generated by #(¢) is asymptotically
stable.
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e globally asymptotically orbitally stable if the limit cycle y generated by ¢(¢) is orbitally
asymptotically stable, and it is also globally stable.

Since the above definitions of orbital stability of a nontrivial periodic solution of
system (3-4) are based on the volume contraction of the e-neighborhood of limit cycle v,
this concept is also referred to as, contraction of a steady orbit.

There is another way to prove the stability of a limit cycle or the orbital stability of a
given system. If one can define a proper Poincare map between two hyperplanes and
prove the Poincare map contracts in certain region of the state space hyperplane, then the
system is said to be orbitally stable in that region.
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Chapter 4
Stability of Bipedal Walking

The dynamics and locomotion stability of a bipedal walking robot are facilitated by first
introducing some simplifications of the robot’s dynamic models. The dynamics models
are derived under some reasonable approximations and assumptions. The analysis of the
dynamics uses nonlinear system theory. Foot strike, which enforces the dynamic
switching of a bipedal walking robot, is also discussed.

4.1 Dynamic Modeling

Approximations are necessary in the dynamic modeling of a bipedal walking robot. To
this end, the following assumptions are made:

(1) The legs of the biped are approximated as a lumped mass positioned a fixed
distance from the hip, together with a linear slider joint capable of varying the leg
length (Figure 4-1).

(2) There is no slipping between the feet and the ground.
(3) In single support phase, the length of the stance leg is fixed.

(4) In double support phase, the leading leg has a constant leg length, and the
distance between two feet (step length) is also fixed.

(5) During walking, the step length in consecutive cycles is assumed to be constant.

Although (4) and (5) are admittedly bold assumptions, they have been found highly
compatible with the simulation results.

4.1.1 Dynamic model in double support phase

Further simplification is made in the double support case. The leg mass (3~5% of body
mass in Spring Flamingo shown in Figure 1-3) is ignored in the model of double support
for simplicity of analysis. In Figure 4-1, the leg length of the leading leg is fixed. Only the
trailing leg can be extended to propel the robot forward. Since the length of the leading
leg is fixed in this control scheme, there is only one degree of freedom in the model. For
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convenience, we choose & as a state variable instead of x. The relationship between ¢
and x is expressed as,

LGP+ A =X

TP, (4-1)

& =cos

where A is the step length equal to the distance between two ankle positions (Figure 4-1)
in double support phase.

Figure 4-1: Diagram for the dynamic model in double support phase.

By means of Lagrangian equation, the system equation can be obtained, which is the
same as an inverted pendulum except for the actuator force f exerted by the slider joint in
the trailing leg. The derivation of this dynamic model is provided in Appendix A.

MI*6 + Mglcosf =7 (4-2)
where the torque command is,
r=fxF=f-Isina

; A .
sing =—sind
X

The linear slider joint command is expressed with 1,
X
=i, 4-3
4 Alsin@ *2)
Substituting (4-3) into (4-2), we can derive the dynamic equation as a function of variable
i

m(x)x+n(x,x)x+g(x)=c(x)- f (4-4)

We can also express the gait variables ¢ and ¢, in terms of &:
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V4
4=2-0 (45

. A—Ilcosd
=i l—
7. =g /sind

4.1.2 Dynamic model in single support phase

We assume in single support, the leg length of the stance leg is constant in this model
(Figure 4-2). Choosing variables &, &, and the gait variables @ and ¢, are expressed as:

Figure 4-2: Diagram for a dynamic model in single support.

=—(Z-0,
{’é] S (7

#=0,+¢=0,-5+0,
With the Lagrangian equation, we can derive the dynamic model for the single
support phase below. The details of this derivation are provided in Appendix A.

[mx? + (M +m)l* + ma*16, + ma*é, + mla -sin 6, - 6, +[mgx, + (m + M)gl]cosé,
—mga-cos(6, +6,) =1, (4-8)

ma*6, + ma*6, —mlab, -sind, —mga-cos(6, + 6,) =7, (4-9)
Generally, the dynamics for any biped can be formulated as
M(0)8+ N(8,0)0+G(6)=u (4-10)

where M(#)is the inertia matrix, N(6,#) is a matrix with the Coriolis and centrifugal
coefficients, G(#)is a vector of gravitational torques, ¢ is the state variable, and « is the
torque commands.
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4.2 Reachability and Stability in Local Dynamics

4.2.1 Reachability of nonlinear systems

When a nonlinear dynamic system is represented in the following state space form,
k= [0+ ug ), (4-11)
i=1

where f, g, ..., g, are given vector fields, and x € R", then we may define “system
reachability” as follows:

Definition 4.1 The system (4-11) is said to be (locally) reachable around a state
x, € X < R" if there exists a neighborhood U of x, such that for each x, €U, there

exist a time 7 >0 and a set of control inputs {u,(¢) |t €[0,7],1 <i <m} such that, if

the system starts in the state x, at time 0, then it reaches the state x, at time T.

The following theorem gives a simple sufficient condition for the system (4-11) to be
locally reachable around an operating point x, by its linearized equation (Vidyasagar,

1991).

Proposition 4.1 Consider the system (4-11), and suppose x, is an operating point, which

satisfies the system equation (4-11). Define the linearized equation around x, as

E=Ayz+ ) by, (4-12)

Then the system (4-11) is locally reachable, if the system (4-12) is reachable, ie., if the
following matrix

W, = [Bo 4B, - AgnlBoJ (4-13)
has full rank, where B, =[b,,---b,_,].

Applying the above concepts, one can analyze the reachability of the dynamics in
the double support phase and single support phase for a biped robot. We first convert the
dynamics equations into a state space form then apply the above theorem to analyze the
properties of the bipedal dynamics.

4.2.2 Dynamic analysis in double support

The biped dynamics equation (4-2) can be rearranged into a state space representation.

X, =X,
= A{llz (—Mglcosx, + 1) (4-14)

Ay
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where x, =6, x, =4. Using these in the control law, r=Kp(¢9* —5’)=Kp(w—c9), we

have

X =X,
1 (4-15)

X, = W(Kpa)—l(px2 —Mglcosx,)

Since the time interval for double support phase (¢,) is usually very small, the state

values do not change significantly, especially for the position variable x, = &. Therefore,
local linearization allows us to find a closed form solution of the system dynamics during
this period.

Let x, = x,(0) + Ax,, x, = x,(0) + Ax, . The linearized equation is

Ax 0 1 Ax 0
{ '1] =, X, ]{ ‘} {xZ( )} (4-16)
sz — 7881 X, (O) Pl sz U,
Ko K x(0)
where u, = ——f—cosxl(O)+ ]\/;lz - ?\/I ;2 (4-17)

From the linearized equations (4-16) and (4-17), we can obtain,

0 1], 1o
%= —1gsinx(0) -=&|”7° [0 1

Then, W, = [Bo AOBO]. We can easily check that ¥, has full rank. We may then conclude

from Proposition 4.1 that the dynamics in double support are reachable. Also we can easily
verify that the eigenvalues of the above dynamic system are both negative. Therefore we
can conclude that this dynamic system is stable in double support phase.

4.2.3 Dynamic analysis in single support

From equations (4-8) and (4-9), the state space representation of the dynamics in single
support phase is obtained:

X, =x,
S . .
X, =5-[mlasinx, -x, —mlasinx, - x, — y, cos x, + 7, — 7, ]

I, =x, (4-18)
Xy =-[—cysinx - x, + mlasinx, - x, + £cos(x, + x,) - , + y, cos x,

—mgacos(x, +x,) + 27, — 7]

Where x1=€1, xzzalr x3=HZI x4=92'
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Distinct control schemes are used in the toe-off period (¢, = 0) and the touch-down

period (@, <0). When ¢, 20, ie. 6 +6, 2%, the control commands are,

£ =0 (@19)

5,=K,(5-6-6,)-K,(6+6,). (4-20)
When ¢, <0,ie. § +6, <%,

7, =0 (4-21)

r,=K,(-7+26,-6,)-K,(6,+86,). (4-22)

In this case, for the double support dynamics (4-18), we cannot apply Proposition 4.1.
Because the control signal 7; is always zero (for the half-actuated ankle joints in a biped),

the Gramian matrix W, of the linearized system does not have full rank. However, we
can use the reachability concept in definition 4.1 to analyze the dynamics.

Applying 7, =0 (since the ankle joint has very limited torque in actuation), we can
analyze the local dynamics separately for &, and &, from equation (4-8) and (4-9). We can
find the feature of the biped dynamics (in single support) in a similar way as we did for
double support dynamics (by setting the other state variable as constants). The dynamics
for &, (stance leg), which is an inverted pendulum model, are unreachable and unstable,

but the dynamics for &, (swing leg) is reachable and stable.

4.3 Stability of Bipedal Locomotion Control

Whether it is rigorously proven or merely observed, stability is a critical requirement in
the control of bipedal walking [Todd (1985), Vukobratovic (1993)]. But unlike
conventional control system stability, a walking robot’s stability is not a question of
tracking some desired trajectory [Pratt (1999)]. To achieve the stability, a biped should not
fall down and should walk at a steady pace. In other words, its posture (roll, pitch, yaw,
height) should be bounded within some range of nominal values, and its gait should
converge to a periodic orbit. We refer to these two ideas as Postural Stability and Gait
Stability.

Figure 4-3 shows the relationship of gait stability and postural stability. Note that a
robot may have postural stability and not have gait stability - for example its leg motion
might be aperiodic or even chaotic [Vakakis (1990)] - but not the other way around. Ideal
walking requires both gait stability and postural stability.
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Gait

Postural o
Stability

Stability

Figure 4-3: Description of relationship between gait stability and
postural stability of a walking robot.

Many researchers have previously studied postural stability. Recently, Zero
Moment Point (ZMP), which characterizes the zero moment point (the virtual turning
point on the ground plane) of the biped structure, has been utilized to achieve postural
stability, as with the Honda humanoid robots [Hirai (1998)] and the WABIAN robots [Li
& Takanish (1992)]. ZMP control is used to maintain the zero moment point of the biped
within the stance region, called a polygon area, such that the robot will not fall over. This
approach is used in postural stability measurement, but it is extended to a walking
control algorithm for trajectory planning [Hirai et al (1998)].

Gait stability has been much less studied. A few researchers have addressed this
topic in passive walking [McGeer (1990), Goswami (1996)] and running [Vakakis (1990)],
and in some neural models [Hu (1999), Taga (1995)]. McGeer (1990), a pioneer in passive
bipedal walking [McGeer (1990)], demonstrated that a passive walker can attain a stable
periodic motion, and he analyzed this behavior with a linearized mathematical model.
Recently, Goswami (1996) studied the periodic behavior of a passive compass gait of a
biped. Taga (1995) has addressed this in his neural oscillator driven humanoid-legged
locomotion control. With neural oscillators one can generate a nonlinear limit cycle
process to accomplish bipedal walking [Hu (1999)].

The majority of studies of gait control, however, have focused on gait modification
and implementation for different terrains [Hirai (1998)] instead of stability. Despite this
lack of work, gait stability is crucial for locomotion. Without gait stability, the leg motion
and forces available to the robot to maintain postural stability become unpredictable, and
postural control may fail despite a good postural control method.

In his study of stability, Vukobratovic (1973, 1990) proposed a repeatability
condition, which is required for the stability of a periodic gait. In this thesis, an active
locomotion control approach is developed by means of nonlinear switching control
schemes that meet this condition. It can be used to achieve postural stability and gait
stability. In this approach, we use different controllers for the double support and single
support phases. An orbital contraction tuning technique is used to choose the state-
dependent switching surfaces. Nonlinear control theory is then used to prove gait
stability.
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dependent switching surfaces. Nonlinear control theory is then used to prove gait
stability.

Postural stability can be specified with indices like body pitch angle, roll angle and
height. Figure 4-4 shows postural stability with height indices. Besides, the ZMP criterion
is usually utilized for monitoring postural stability [Vokobratovic (1990), Li & Takanish
(1992)], and it can also be used to specify the stability boundaries.

Figure 4-4: Postural stability with height index.

Figure 4-5: A description of approximate cyclic motions, which are
confined a very narrow region. When the volume of the region shrinks
to zero, a perfect limit cycle is achieved.

Gait stability requires a globally stable cyclic motion of the robot. That is, the global
motion should be periodic. From Vukobratovic’s definition [Vokobratovic (1990)], all the
states and velocities should be repeated with a constant period and stride length. In this
study, we create a global state variable that abstracts the state of the legs and enforce
stability on this variable and its derivative to satisfy the repeatability condition. As a
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Gait stability can be reached by appropriately switching between single support
phases and double support phases. The switching point can be adjusted in the boundary
area in order to balance the kinetic energy and the potential energy in the single support
phase, which is described in details in Chapter 7. The goal is to enforce the repeatability
condition (gait stability) while the constant stride length (step length) is guaranteed by
means of controlling the swing leg. The repeatability condition with symmetry is
expressed as:

X(t,)=%(t,+T) (4-23)
X, (1) =%(t,+7) (4-24)
X,(t,)=%(t,+T) (4-25)
X (t,)=%(t,+T) (4-26)

where 1, is the previous touch-down time of a foot, T is the period of one step, and ¥,and
%, are the state variables for the left leg and right leg respectively.

4.4 Ground Impact

When the swing leg strikes the ground, there is a sharp change in the angular velocities,
6, and é,, while the angular positions, & and &, will remain the same during the ground

impact time interval. Assume that the ground surface is rigid, and that the angular
momentum and energy will be conserved. When at high walking speed the double
support phase vanishes, the stance leg leaves the ground as the swing leg simultaneously
strikes the ground. Then conservation of angular momentum provides a deterministic
linear function P [Goswami (1996)]:

0(ty) = P(6)6(t;) and 6(1;) = P(6)6(t;) (4-27)

When the double support phase is of nonzero duration, the stance leg remains on the
ground while the swing leg touches down. The relationship between 6"(t§ ) and 6"(1?5 ) is
non-linear and deterministic. This nonlinear mapping can be formulated as

a(t3) = P(6,6(t;)) (4-28)

where P only depends on the robot geometry, & and &(t;).

Since the mapping from the state before striking the ground to the state after striking the
ground is deterministic, linear, or nonlinear, the above Poincare map analysis will still be
effective.
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4.5 Summary

The simplified dynamics models that are presented in this chapter will be used in the
switching control for illustrating the dynamic behaviors (Chapter 7). Nonlinear analysis
of the biped dynamics was used to demonstrate that the dynamics in the double support
phase is reachable and stable with redundant structure, and the dynamics in single
support phase are not reachable and unstable. Locomotion stability, including postural
stability and gait stability, is discussed. Also the discussion of ground strike gives
dynamics constraint at the moment of ground strike.

40



Chapter 5

Rhythmic Control Driven by Neural
Oscillators

This chapter introduces the neural oscillator model and the analysis of the general
rhythmic control framework. The results of studying the basic oscillator module and its
behavior within a closed loop feedback system provide the foundation for its application
to bipedal legged-locomotion control (in Chapter 6).

5.1 Introduction

A growing number of researchers are using neural oscillators to control robots. The
application domains include legged locomotion [Miyakoshi (1998)], locomotion of multi-
segmented creatures [Orlovsky (1999), Lewis (1996)] and arm control [Williamson (1998)].

Oscillators are used in all these cases because they can entrain and adapt to the
dynamics of the plant (system), giving robust behavior in the face of changing system
parameters or perturbations. One drawback to these systems is that they are very difficult
to tune. In spite of general analysis of oscillators [Matsuoka (1985)] and learning, there is a
lack of practical knowledge of how the oscillators work and how to design systems using
them. A general framework for designing neural oscillator driven control system with a
compensator was proposed in the recent paper [Hu (1999a)]. However many reported
results of neural oscillator rhythmic control are based only on experimental
demonstrations or simulations. Theoretical study is needed in order to prove those results
and to provide appropriate analysis for better control design.

In this chapter, nonlinear system theory is applied to neural oscillator driven
rhythmic motion control [Hu (1999b)]. First, a neural oscillator unit is studied with
nonlinear system theory. The existence and uniqueness of a solution to the oscillator unit
equation is proved using the Lipschitz condition. Then, by proving the boundedness of
the neural oscillator states, the condition of stable oscillation for a symmetric neural
oscillator unit is given. Next, dynamic interaction (entrainment) with a passive plant is
discussed with “describing functions”. Finally a compensator based rhythmic control
design approach is presented, in which a compensator is added to shape the plant
dynamics. A sufficient condition has been derived for the entrainment of the neural
oscillator driven control.
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5.2 Neural Oscillator Models

Many different neural oscillator models have been inspired by biological research. Only a
few of these can be analyzed mathematically. The two most populous models that have
been used for pattern generators are introduced in the following sections.

5.2.1 Van der Pol oscillators

Van der Pol oscillators have been studied widely both in mathematics and engineering.
Bay and Hemami (1987) and Zielinska (1996) applied this oscillator model in human
locomotion rhythm generation. The equations describing the dynamical properties of the
oscillators have the following general form:

P-pu(pP-x")-x+g" - x=s (5-1)

where variables x, p?, g’ are the parameters that influence the properties of the

oscillators. g is the tonic input to the neural oscillator. The values of x as a function of

time, resolving the coupled equations of these oscillators, describe the changes of states,
which drive the plant in a synchronous rhythm.

Using the above general model, coupled oscillators can be formed. A four-oscillator
system describing biped motion, which is formed in a ring, was proposed by Zielinska
(1996).

N 2 2y . 2
x]"/‘l'(pl—xa)'xl"'gl'xazsl
e 2 2\ - 2
X =t (P~ %) X, + 85X, =5, (5-2)
" 2 2y 2
Xy — gy (P —X,) X3+ g5 - X, =5,
. 2 2\ . 2
Xg—py Dy —X5) X, + 84X, =5,
where
Xy =X = Ay X = Ay X,
Xy =Xy = Ay Xy = Ay - X,
X, =Xy = Ay % — A4y - x,

X, =X = Ay Xy = Ay %y

Here 4, p?, g}, s;, i € {1,2,3,4} are the parameters which determine the properties
of the oscillators. A;s, i#j, i,j€{l,2,3,4} are the mutually-inhibited connections

between the oscillators. The influence of the above parameters is very complex. An exact
analytical solution describing the behavior of the coupled oscillators is not known.

5.2.2 Matsuoka’s neural oscillators

A two dimensional recurrent neural oscillator can be described by the following coupled
ordinary differential equations:
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T-X, =—xi—ﬁ"i—;2_:=lwy’yj+si (-3)

T-v,=-v,+y,
¥ =f(x -0, f(x)=max(0,x). (5-4)

where i indicates the ith neuron in the neural oscillator, x;is the membrane potential, y,is
the neuron output, v, is the membrane current of the slow recovery component, f(x)is a

nonlinear output function of the neuron, and & is the membrane potential threshold.
Parameter ris the membrane capacitance, # and T are the resistance and inductance

associated with the slow current events, and s, is the tonic input to the neuron.

Using this fundamental neuron model, Matsuoka (1985) studied the oscillation
behavior of the mutually inhibiting neurons in general. Williamson (1998) successfully
applied a modified two-neuron unit in the rhythmic arm movement control of a
humanoid robot COG. In this study, we use a slightly modified two-neuron oscillator
unit. The neural dynamics are expressed by the following differential equations:

. (5-5)
nX%, ==X =M, —wyy—e+r
LY, =V, +¥,
¥, = f(x;) =max{x;,0}, i=12. (5-6)
Output: y, = kY, -k, k.k, >0. (5-7)

where e is sensory signal feedback from the control plant, r is a tonic input, and k,,k, are

the constant coefficients of oscillator output. A structural diagram is shown below in
Figure 5-1.

r Tonic Input

r Tonic Input

Figure 5.1: Diagram of a two-neuron oscillator. The recurrent links and
the co-states of neurons are not shown in the diagram. Only visible are
the exterior connections. Black circles correspond to inhibitory
connections, open to excitatory.
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From Matsuoka’s analysis of neural oscillation networks [Matsuoka (1985)] and
Williamson's later demonstration [Williamson (1999)], it is clear that mutually inhibitory
neural oscillators have the following main features:

1) Amplitude of oscillation: The tonic input r determines the amplitude of the
oscillation, with amplitude proportional to 7.

2) Frequency of oscillation: The time constants 7, and r, determine the frequency and
shape of the oscillator output signal. Roughly, the frequency of oscillation output
is proportional to 1/ 7,.

Example 5-1: Simulation results of neural oscillator (5-5). The parameters of this
example are: 7, =1/32, 7, =1/2.656, =25, w,=w, =20, r=6.0, e=0. The
initial condition of the oscillator is, x,(0)=-3.9, x,(0)=5.5, v,(0)=0, v,(0)=0.
Figure 5-2 shows the dynamic responses of states, output and a typical limit cycle of
the oscillator module (5-5).

State x1 State x2
[ &
4 4
. . \
% 0 %o /
-2 -2
-4 —4
-6 ~6
0 1 2 3 4 5 [} 1 2 3 4 5
t(sec) t(sec)
Qutput yo x1-x2 phase portrait

x2
o ~N

¥0
& °
LA

o

ﬂ

Figure 5-2: Simulation results of an example of oscillator (5-5).

5.3 Analysis of Neural Oscillator Unit

Although the properties of the mutually inhibited neural oscillator have been
studied in general analyses and by simulations as well as experiments, a rigorous analysis
of the modified neural oscillator is not available. The modified neural oscillator has been
found very useful in robot control [Williamson (1999), Hu (1999)]. In this section, the
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stable rhythmic behavior of the modified oscillator is studied and stated in the form of
theorems. Theorem 1 states that the solution to the oscillator unit exists and is unique, and
theorem 2 describes the boundedness of the neural oscillator circuit.

5.3.1 Existence and uniqueness of solution

Theorem 5.1: There exists a unique solution for the modified neural oscillator circuit.

Proof: Reorganizing the neural oscillator equation as,

X, = —Lxl _ﬁvl “mf(xz) +n = £
‘:’1 = ri V= f (%, )w2l /2 (5-8)
X =% __vz __f(x1) +r = f,
v, ==V fn) =/,
n=s/t,rn=s1/,1.
Let £=[xl i X Vz]Tf F(E’t)=[f1 f f f4]TI
then, x=F(x,t) (5-9)
Vt€[0,T], Vx,x, € D (an open region),
” f(x)— f(x, )” < “x - x0” for f(x)=max{x,0}. (5-10)
Then, we can derive
|F(x,0) - F o+ £ |z~ xo]| + ofx x| (5-11)
where z-=min{rl,2'2}, a=max{7++L, 2+ 1},
By collecting terms, we get
|FGen = Fxo,t)| < L x| (5-12)
where L=1+£+ . (5-13)

Therefore, we can conclude that F(x,¢)is locally Lipschitz on [0,7]. Since (5-12)
holds for any xand x,,F(x,¢)is also globally Lipschitz on [0,7]. In summary, we
know that F(x,)is piecewise continuous in #€[0,7], and F(x,t) is Lipschitz on
[0,T]x B with a constant L, where B = {x | “J_c - gc_(,” < 77} (closed ball).

From Theorem 2.6 [Nicola (1995), Khalil (1996)], we know that the equation
x=F(x,t), x(0)=x,, has a unique solution in C[O, 5] for some o > 0.Hence the
solution of equation (5-5) exists and is unique. Q.E.D.

5.3.2 Boundedness of the oscillator behavior
Theorem 5.2: The solution of neural oscillator is bounded for a given input.

Proof: To prove the boundedness of equation (5-8), let’s consider variables x,, v, first.

Directly solving the co-state equation of v,, we get,
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w() = (0)e +Lem j 1 (x(w))e du (5-14)

: S (% (w)) = max{x, («),0} 20
= wOZO)=-a). ¢20) (5-15)
Solving for x,(¢) from (5-8), we get,
t H
x%,(0) =x,(0)e™ +n(1-e1) L j v (w)e du — Sz el j O, @)e"du  (5-16)
0 0
Plug (5-15) into (5-16), we have

t
X (t) < le (O)' + r + Tiie—t/n J-vl (O)eu/r1 du

0

=[x O)+ 75 + A (O)|1—e)

< lxl (0)[ +r+ ﬂ|v] (O)|
=a,(x) (>-17)
Applying (5-17) to (5-14) and manipulating similarly gives
() < (0)]+ x5, (0)|+ 1, + A (0) = &, (v) (5-18)

Then plugging (5-17) into (5-16), we obtain
x (1) = —le (O)I - W12[|x1 (0)| +r+ ﬂ!vl (O)I] - ﬂ[lvl (O)l + |x1 (O)I +n+ ﬂlvl (O)l] =-a(x,)

(5-19)
= —og)svO<aM) a(v),a,(v) >0 (5-20)
—a(x)<x ()< a,(x) a(x),a,(x)>0 (5-21)

= v(¢t)and x,(¢) are bounded.
In a similar way, we can prove that v,(¢), x,(¢) are also bounded.
Therefore, given that the inputs| 7 |, | 7, | are bounded, we can conclude that the state
variables x,(?), v,(¢), x,(¢), v,(¢) are bounded.
Since Yo =¥ =Y, = f (%) f(x,),
the output of oscillator y, is bounded. Hence the solution of the oscillator is bounded.
Q.ED.

5.3.3 Analysis on stationary solution

From Matsuoka’s analysis on the general form of the neural oscillator (equation (5-
3), (5-4)), the following conclusion (in Lemma 5.1) for a symmetrically connected neural
oscillator can be extended directly to the modified neural oscillator model.
From the definition in Chapter 3, a stationary solution of equation (5-5) must satisfy
the following conditions:
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¥y =G0 =[g,0") &0 (5-22)
where y° =[y’ 7] is the output,

(") = f(woy;, ~ B +5,) (5-23)

&) = fwuy = 7 +5,) (5-24)

s, =e+r,s,=—e+r.

Conversely, if y° satisfies (5-22), then there exists a stationary solution of equation (5-5):

_ 0 0
X, =-w,y, —H ts

0
Vy, =

1 yl . . (5_25)
X, ==wyuy, =, +5,

v, =y§

Lemma 5.1: Oscillator equation (5-5) has at least one stationary solution.

The above Lemma 5.1 can be proven by showing that G is a continuous, contractive

mapping [Matsuoka (1985)].

Lemma 5.2: For a symmetric, mutually inhibitory neural oscillator (equation (5-3)), ie.

Wy, =w,, =w>0, the above two-neuron oscillator unit (5-5) has no stable stationary solution

if and only if the following hold
w/(l+ ) <r,/r,and w>Q1+7/T) (5-26)

Theorem 3.3: The modified neural oscillator (equation (5-5)) with symmetric, mutually
inhibitory connections has no stable stationary solution when the following conditions are

satisfied
wi(l+ f)<s,/s and w>(1+1,/7,) (5-27)

The proof of this theorem is a straightforward application of the above Lemma 5.2 to

equation (5-5).

In summary, from theorem 1 and theorem 2, we know the existence and uniqueness
of the neural oscillator’s dynamic solution and its boundedness. When the condition (5-
26) holds, no stable stationary solution exists (Theorem 5.3). Therefore, the modified

oscillator is guaranteed to have bounded oscillation.

5.3.4 Finding the limit cycle

Limit cycle is one of the bounded oscillation behaviors, which includes chaotic motion
within certain bounds. However, using piece-wise linear analysis to find the limit cycle,
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we can rule out the possibility of chaotic behavior. If a limit cycle exists for a given
oscillator circuit, we say that it has periodic oscillation.

Considering the oscillator model of equation 5-5, we can use the piece-wise linear
analysis technique described in Chapter 3 to find the conditions required for the existence
of a limit cycle. First we formulate the model into piece-wise linear systems with several
switching surfaces and then we derive the condition for the existence of a limit cycle.

The piece-wise linear system equations of model (5-5) are as follows,

Systems:

x=A,x+B,u (5-28)
where x=(x;, x, v, v,),u=(s, s,)", a@c{l,23,4}.
Switching surfaces:

S, :x, =0

S,:x,=0 (5-29)

Two switching surfaces partition the state space into four different regions, where
the local dynamics are linear. Figure 5-3 shows such partitions and a limit cycle of the
oscillator. The limit cycle does not enter quadrant III for this oscillator model.

(45, Bs)

Figure 5-3: A limit cycle of the oscillator (5-5), and the piece-wise linear
dydnamics.
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SystemI: (4,,8,), D={x,>0,x, >0}
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With respect to a symmetric neural oscillator unit in (5-5), we have w,, =w,, =w. The

limit cycle is symmetric with respect to surface x, = x, .

Assume there exists a limit cycle for the above neural oscillator. The conditions for the
existence of a limit cycle are derived as follows. In Figure 5-3, we assume that x;,
i €{0,1,2,3,4}, are the points where the limit cycle crosses switching surfaces §,, S,.

Let ¢; be the transition time from x;_, to x;, j € {1,2,3,4}.

Theorem 3.4: Consider the oscillator model (5-5) as a piece-wise linear system. Assume there
exists a periodic solution y with four switches per cycle and with period

t' =t +t, +t, +1, >0, where t;, J €{1,2,3,4} are defined as above. Define
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gl(tl ,t2>t39t4) = C1§0
g.(t,1,,6,t,)=C, x,

* * * * * (5-30)
8:(t,1,,15,1) = o x,
8., 5,,1,,1) = C\x
¢,=f1 0 0 0],C,=[0 1 O Q]
Then the following conditions hold
g1(t;:t;,t;,t:)=o
£ )= (5-31)

g3(t1 stz,t;; ’t4) = 0

8.t ,1,,t5,2,)=0

and the periodic solution is governed by the linear sub-systems respectively as shown in
figure 5-3. Furthermore the periodic solution y is obtained with any of the following initial

conditions:

x(0) = x,, 0r x,, 01 X;, 0r X,
where

x(; = (1—E4E3E2E1)—1[0

3 =(-EEEE)"],

x,=(1~E,EEE)"I,

X =(-EEEE)"], (5-32)
I,=E,Z, +E,E,Z +E,E,E,Z, +E,E,E,E Z —E,E,E,Z, —E,E,Z, —E,Z, — Z,
I,=EZ,+EE,Z, +EE,EZ +EE,EFE,Z,~EE,E,Z, - EE,Z -EZ,-Z,
I,=E,Z, +E,E,Z +E,E,E,Z, + E,E,E,E,Z, — E,EE,Z —E,EZ, ~EZ, ~Z,
I, =E,Z,+E,E,Z, +E,E,E Z, + E,E,E,E,Z, - E,E,E,Z, - E\E,Z, ~ E,Z, - Z,

(5-33)
E =™, B =M E =e™ E,=e®™, 7 =A4"Bu, ic{,2,3,4).

The proof of the Theorem 5.4 is provided in Appendix B.

Example 5-2: Finding the limit cycle. For example 5-1, the limit cycle exists. It has
following information:

x,=(0 0.7528 1.8679 1.6787)'
x, =(2.0693 0.7535 0 1.0645)'
x, =(1.8678 1.6792 0 0.7521)
x;=(0 1.6053 2.0687 0.7530)
t, =t, =0.0679
t, =t, =0.2859.
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5.3.5 Local stability of a limit cycle

Assume there exists a periodic solution, i.e. limit cycle. A limit cycle is locally stable if
states within a local neighborhood are attracted to the limit cycle. Consider the map T

from some point in a small neighborhood of x;in switching surface S,, k €{1,2}, to the
point where the trajectory returns to §, . Local stability of a limit cycle can be determined

by looking at the poles of the linear part of the map T. Stability follows if the poles are
inside the unit disk. The following theorem gives conditions for local stability of limit
cycles of piece-wise linear systems.

Theorem 5.5: Consider the above neural oscillator model (5-5). Assume that there exists a
limit cycle y with period t" =t, +t, +t, +¢t, >0 as described above. Assume also the limit

cycle is transversal to (i.e. crossing) the switching surfaces S,, S, at x;, je{l,2,3,4} as
described in figure 5-3. The Jacobian of the map T defined above is given by W =W ,W,W,W,

where
V1C2 Ar
W, = (1 - 22yt (5-34)
14
W, = (1 -2yt (5-35)
Cyv,
W, = (1 = LEh)e s (5-36)
V3
W, = (1 - 2yt 537)
1Va
with v, =Ax +Bu, v,=Ax,+Bu, v,=Ax, +Bu, v, = Ax, + Bu. The limit

cycle y is locally stable if W has all its eigenvalues inside the unit disk. It is unstable if at least
one of the eigenvalues of W is outside of unit disk.
Proof: Assume there exists a limit cycle y with period ¢" =¢ +¢, +¢, +¢, >0. The
limit cycle is transversal to the switching surfaces S, and S, at x,, x,, x,, x,, X, as
described in figure 5-3. Consider a trajectory with initial condition x(0) = x, .

= x(t))=x = e (x; + 4 'Bu)— A Bu
Now let x(0) =x, +Jx; € S,

= Cx(0)=C,(x,+5,x,)=0

= x(t)=e* (x, + 5,x, + A7 Bu) — 47 Bu
Assume the solution reaches the switching surface S, at time #, +Ji¢, .

= x(6] +5t)) = e (0 4 550+ A7 Bu) — A Bu
Making a Taylor series expansion in J,x, and Jjt; , we get

Xt +68) =x +eM 5x, + e (A x, + Bu)St +0(S7)
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where e (Ax, + Bu)= Ax +Bu=v,.
x(t +6t) €S,
C,-x(t, +6)=0.
= C,-x, +C -eA‘t‘.é'lx; +Cwv ot =0
C,ox =0 ( x €8)
Assume that the limit cycle is transversal to S, at x; , then C, - (#;) # 0.
= C,(4x +Bu)#0,0r C,-v, =0.
C2eAlt,‘

M

*
A%,

= 5t =—

= (6 +68) = x; + I -22)eM g1 1 o(57)
71¢
=X + WS, +0(32)
Similarly, we can derive
x(t; + é‘zt;) = x; + szé‘zxf + 0(522)
C.

v At
W, = —-2"2)e""
==

2

v, = e (4,x + Bu) = A,x, + Bu
with initial condition x, + &,x, = x, + W,8,x; + o(57) .
Neglecting high order terms, we get

Oyx; =W, 8%,

= (6 +8,8) =X+ WS, +o(S7).

Repeat the above procedure until the solution reaches switching surface S, after time
interval ¢, . Then we get

x(t, +O,t,) = x, + W,0,x, +0(57)

= X, + W W55, +0(S))

where x: = x;,

W, = - vG )eA1t§
13

VC AL
W, = (I —2e=tye
= ( Cv )e

1¥4
v, = ets (4x, + Bu)= Ax, + Bu
v, = et (A,x; + Bu) = A,x, + Bu
This proves the theorem. Q.E.D.

Example 5-3: Local Stability. For example 5-1, the limit cycle of the neural oscillator is
locally stable. The matrix W =W, W,W,W, has all the eigenvalues inside the unit disk:
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{0.0033, 0.0003, 0, 0}. Figure 5-4 shows a limit cycle of oscillator example 5-1. The
oscillator converges to the limit cycle from different quadrants.

a— /
4l
£
0
2 X\
° .

N\,
\

N
G

Figure 5-4: The limit cycle of example 5-1. The oscillator can
converge to its limit cycle from four different quadrants.

5.3.6 Global stability of limit cycle

In the above analysis for Matsuoka’s neural oscillator model, we have investigated the
properties of the oscillator (5-5), have given the conditions for the existence of a limit
cycle. The locally stability of a limit cycle has also been studied in an analytic way.

From our observations, when we have achieved a periodic oscillation with the
neural oscillator model, we always have the properties, the local stability and global
stability with the entrainment signal e not equal to zero. What conditions should be
satisfied for an oscillator in order to have global stability of a limit cycle? If one can prove
the global stability of a limit cycle for an given oscillator then the system analysis will
become relatively simpler when the oscillator is applied to drive a plant for achieving
periodic motion.

However, we observed a special case, in which the neural oscillator may not have
periodic behavior. It may converge to a particular state. Figure 5-5 shows such an
example. With a symmetric neural oscillator model (5-5), when the entrainment signal e is
zero and the initial state for two neurons are identical the oscillator does not have a
periodic behavior, instead it converges to a fixed point.

In general, it is very hard to characterize the region of stability of limit cycles. With
the uniqueness and existence of a limit cycle, we can explore the global stability of a limit
cycle for the neural oscillator. A surface Lyapunov function based method can be applied
in the analysis, which Gongalves et al (2000) have applied successfully in the relay
feedback systems. This approach can be used for investigating the conditions for the
global stability of limit cycle.
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Figure 5-5: A special case: the oscillator converges to a fixed state.

Plant

G,(jo)

Figure 5-6: Diagram of an oscillator driven control system.

5.4 Rhythmic Control with Neural Oscillators

Use of neural oscillators to propel rhythmic motion of a plant was motivated by
physiological research [Grillner (1985), Taga (1995)]. The general system structure of
neural oscillator driven rhythmic control is shown in Figure 5-6. In this system, if we cut
the sensory feedback loop, then the system becomes an open loop control structure,
where the plant responds to the input without guaranteeing synchronous behavior with
respect to the oscillator. Therefore, sensory feedback provides the possibility of achieving
a synchronized rhythmic motion between the oscillator and the plant, called entrainment.

Under what condition, can the entrainment be insured for the above system? Several
approaches are useful for the study of the entrainment behaviors, including piece-wise
linear analysis in the time domain and analysis with describing functions in the frequency
domain. Due to the non-linearity existing in the neural oscillator model, pursuing both a
closed-form solution to the system parameters and an analytic design is extremely
difficult.
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Williamson (1998) used Nyquist plots to explain a graphical design approach in the
frequency domain, using describing functions. This approach can be used to check the
parameter selection of a neural rhythmic control system to some extent.

5.4.1 Study with a describing function in frequency domain

When a neural oscillator is used to control the rhythmic motion of a plant, like robot arms
and legs, the global rhythmic movements are obtained through a process called
“entrainment”. Because of the nonlinearity in neural oscillator models, theoretical
analysis and explainations for the entrainment phenomenon between the neural
dynamics and the natural dynamics of the plant is very difficult to give. So far, only
simulation reports on the entrainment are available although entrainment has been
observed for many years. Taga (1995) used the entrainment concept and constructed
neural oscillator driven human like locomotion successfully. The technique used by
Williamson is Describing Function.

A common way to connect oscillators to systems is to tightly couple them, using the
oscillator output to drive the system, and closing the loop by feeding back a signal from
the system as the oscillator input (Figure 5-6). The transient analysis of this coupled
system is complex but can easily be expressed in the frequency domain by the describing

function method. If the frequency response of the linear plant is G,(j@), and the

linearized response of the oscillator at frequency @ and input amplitude A is G,(4, j®),
then the condition for a steady state oscillation is that the loop gain is unity:

G,(4,j0)-G,(jo)=1 (5-38)

Nyquist plots can be used to explain the graphical design approach in the frequency
domain [Williamson (1999)], based on the describing function technique. It can be used to
check the parameter selection of a neural rhythmic control system to some extent.

Since the frequency domain analysis by a describing function requires an
assumption that the control plant has low pass filtering characteristics, only the first order
(fundamental) component is considered. The prediction can offer an approximate result,
only if the periodic responses of the overall system do not have much deformation, which
means that the higher order harmonics are not severe [Slotine and Li (1991)]. In other
words, the oscillator output is close to a pure sinusoidal waveform. In the case of robot
arm control, this condition can be well satisfied. However, for a general control plant, the
low pass filtering assumption may not hold. What if the control plant itself is unstable?
We will approach this difficulty by shaping the dynamics of the plant in order to
fascillitate the entrainment process.

5.4.2 General control framework
A compensator is added to modify the plant dynamics. Figure 5-7 shows the general
diagram for a neural oscillator control system, where the plant dynamics can be linear,

nonlinear, or unstable. Recent results for the periodic solution of a nonlinear system
assumed that the dynamics beyond the nonlinear components are linear and stable
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(Hurwitz) [Goncalves (2000)]. In our system, since the oscillator is nonlinear, we want the
plant dynamics to be well shaped such that some existing results can be directly applied.

Oscillator Gep(s)
e _ u i e
> NL Compensator » Plant
Gds) G Gp(s)

Figure 5-7: Block diagram of the general nonlinear System.

To facilitate analysis in the frequency domain, a compensator is inserted into the

system to shape the dynamics of plant so that
a) a desired frequency response can be appropriately adjusted; for example, the pass
range of the band-limited filter or the cutoff frequency of the low pass filter can be

changed for certain purposes;
b) modifications can be made for an unstable system to be stabilized;

c) the following equality holds with the approximate transfer function G, (4, w),
which is a function of amplitude A and frequency @ [Slotine & Li (1991)].

G, (4, j@)-G,,(jo) =1 (5-39)

The results of shaping dynamics are:
a) the describing function based frequency method will be appropriate, ie.
predicting the oscillation frequency and amplitude approximately,
b) entrainment can be guaranteed if a sufficient condition (proved in the following

section) holds.

5.4.3 Nonlinear analysis in time domain

When the plant dynamics are linear, piece-wise linear analysis can be applied. Assume
that the dynamics equation of the oscillator is formulated as

x=A,x+B,u
- - - (5-40)

y=Cx

where x=(x, x, v, v,)', u=Br+By
c=[1 -1 0 0],
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1 1
B ="' B =|] {1,2,3,4)
= ’ = r X EL,2,0,

“lol” o

0 0
The dynamics of plant:
f j A”)E B (5-41)
y=Cx

Combining the above dynamics together, we get the following augmented dynamic

equations:
I. Azz B acp X + B 0 ( 5 42)
.| = r -
] |BC 4, |%] o

Based on this augmented dynamics equation, we can apply the piece-wise analysis with
two switching surfaces S,, S, . The results are introduced in next section.

5.5 Entrainment between Neural Oscillator and Plant
5.5.1 Analysis in frequency domain

Considering the control system shown in Figure 5-7, a theorem can be derived as a
sufficient condition for the entrainment of rhythmic dynamics in the frequency domain.

Theorem 5.6: Boundedness of system. For a system as shown in Figure 5-7, if G, (s) is stable
and LTI, or is stabilized by G (s), then the whole system is bounded.

Proof: A periodic signal (oscillation) u is not a /' nor /” signal. It is a power signal,
pow(u) = (lim L LTTuz(t)dt)% <C (5-43)
T T
where C is a constant. Since both u (input to plant) and e (output of plant) are power

signals, the induced norm for the plant is |G_(jw)| . Assume G_(s)is stabilized, i.e.
gn p p o cp

no poles in RHP, then ”ch ( jw)” is bounded, and the output signal e is bounded.

From theorem 5.5, given bounded input, the solution of the oscillator is bounded,
hence it is also bounded for power signals.

G, -6, 4., (5-43a)

G, w) -G, (4, jw)"w <

Therefore, the whole system is bounded for power signals.
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By using the describing-functions technique, a sufficient condition for entrainment
is given in the frequency domain, which was analytically illustrated in a report [Hu
(1999a)].

5.5.2 Piece-wise analysis in time domain

With the augmented system dynamics, we can apply the same approach used in section
54.3 in order to analyze the periodic behavior of the whole system and study the
entrainment, i.e. synchronization.

Since the nonlinearity is only from the oscillator itself in this case (with linear plant),
the switching surfaces are still the same, namely S,, S§,. Therefore, the results from
Theorem 5.4 and Theorem 5.5 can be directly applied with the augmented dynamic
matrices.

Theorem 5.7: Sufficient condition of entrainment. The system (in Figure 5-7) has a
entrained oscillation if the followings are true:

@) G, (s)is LTI and stable;

(b) the oscillator has symmetric connections and the inequality (5-26) holds;
(c) equation (5-31) holds;

(d) the augmented system (5-42) has no stable stationary solution.

Proof: From theorem 4, the overall system is bounded. Since equation (5-26) is
satisfied, then by Theorem 5.3, there is no stable stationary solution of equation (5-5)
(for the oscillator part). By Theorem 5.1, a solution of equation (5-5) with any initial
states is unique.

As a closed-loop system, the stabilized LTI plant and the neural oscillator model
both satisfy the Lipschitz condition separately, thus the composite system in (5-42)
also satisfies the Lipschitz condition. Then the whole system consisting of neural
oscillator and a compensated LTI plant has a unique solution. With condition (d), we
know that there is no stable stationary solution for the composite system. Therefore,
the system has an oscillation solution. Furthermore, with condition (c) satisfied, the
limit cycle exists for the system. Hence entrainment is achieved.

For predicting the final frequency of the system, condition (5-31) or the Nyquist plot
can be used. Also, harmonic analysis can be executed to predict the entrainment
frequency [Williamson (1999)].

Design procedure for neural oscillator control:
From the above theory, a design procedure is presented for rhythmic control of a
nonlinear plant with neural oscillators:
Step 1: use condition (5-26) to determine the oscillator parameters;
Step 2: use a compensator to stabilize the linearized (if nonlinear plant) plant model;
1
t

:

check if condition (5-31) is satisfied with the composite system;

Vs
&
9"

check if the augmented piece-wise linear system (5-42) has no stable stationary
solutions.

w
)
o

Step 5: Test the entrainment by simulation.

:
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5.6 Examples

We use a pendulum model and an inverted pendulum model as examples for
demonstrating the above theory.

5.6.1 Rhythmic control of a pendulum
The dynamic equation of a pendulum is given by
ml*0+b+ mglsin(d) =r (5-44)
This pendulum model is stable, so no compensator is required for shaping the plant

dynamics. A two-neuron oscillator controlled rhythmic movement is shown in Figure 5-8.
Clearly, a limit cycle is reached.

Figure 5-8: Phase plot of responses in pendulum control.

5.6.2 Rhythmic control of an inverted pendulum

The dynamic equation of an inverted pendulum model is,
mi*0+bO—mglsin(d) =r (5-45)

This inverted pendulum model is unstable, but a compensator with state feedback
can stabilize it. Equation (5-46) shows the dynamics of such a compensator.

r=—(k+k,0) (5-46)

Figure 5-9 shows the response of the neural oscillator controlled inverted pendulum
without a compensator. The response shows that entrainment cannot exist in this case.
But with compensation, entrainment can be achieved. A stable rhythmic response is
shown in Figure 5-10. In this example, the compensator was designed based on the
linearized model of inverted pendulum. The simulation results with the linearized model
are very similar to those obtained with nonlinear model.
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Figure 5-9: Phase plot of responses in inverted pendulum
without compensator.

Figure 5-10: Phase plot of responses in inverted
pendulum with compensator.

5.7 Conclusions

The existence and uniqueness of solution to the modified neural oscillator unit has been
proved by means of Lipschitz condition. It has been shown that the neural oscillator can
achieve stable rhythmic dynamic motion with certain conditions. The entrainment
condition for a neural oscillator unit interacting under a passive plant is studied in time
domain and frequency domain.

A compensator based design approach is presented for neural oscillator control
systems. Using the sufficient condition of entrainment derived in this thesis, a design
procedure is proposed for rhythmic control with neural oscillators. The concept and
procedure have been demonstrated with simple examples such as pendulum and inverted
pendulum models. The compensator based design approach can be used in dynamics
shaping of the plant.
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Chapter 6

Bipedal Locomotion Control with
Neural Oscillators

The neural oscillator model studied in Chapter 5 can be directly applied to systems whose
dynamics are fixed during the operating processes, such as robot arm control [Williamson
(1999)]. For a bipedal walking robot, however, the dynamics are changing in different
walking states, and proper coordination is required for generating locomotion. How to
construct a neural oscillator network with the oscillator modules (described in previous
chapter) for the joint control of a bipedal robot is the focus of this chapter. The goals in
bipedal locomotion control with oscillators are two-fold: utilize the results developed in
Chapter 5 for local joint control of the biped and construct the neural oscillator network
with the local oscillator modules such that the biped can achieve a collectively synergetic
skeletal motion (called synchronized coordination). The sensory feedback and
organization of neural oscillator network are described here in details as follows.

6.1 Overall Structure of the Control System

Based the analytic results from the previous chapter, two things are important for
controlling a bipedal walking robot with neural oscillator units. First, the local joint
control should be designed properly so that the entrainment in the local control system is
guaranteed. Second, the overall distributed neural control system should be able to
generate a synergetic rhythmic motion for the bipedal skeletal system, called stable
locomotion. A neural oscillator driven controller for a bipedal robot system is constructed
based on these considerations.

Figure 6-1 shows a complete architecture of a bipedal locomotion control system
driven by neural oscillators. There are five major components in this system: the neural
oscillator module, the compensators, sensory feedback module, the state observer, and
the impedance control module. The neural oscillator module generates and coordinates
the rhythmic motion for robot joints. It takes the sensory feedback signals from the
sensory feedback module and evolves to the common rhythm for the driven system and
the oscillator with self-organization. The impedance control module provides the proper
postural control and structure dynamics for the biped. The state observer detects the
actually walking state and consequently adjusts the sensory feedback signals for
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providing correct information to the neural oscillators. The neural oscillator driven
control provides the bipedal control system with proper locomotion and a closed loop
gait control mechanism through the sensory feedback and entrainment between the
neural dynamics and the musculo-skeletal dynamics of the biped.

Impedance
Control
l tonic input
Neural Compensolor ; Physical N Skeletal
Oscillators i Actuators System
y
Environment
Sensory < State &
Feedback € e —— 2

Figure 6-1: System Architecture for Neural Oscillator Control of a Bipedal
Walking Robot.

6.2 Local Control with Neural Oscillators

A general framework is proposed for designing the nonlinear neural oscillator based
rhythmic control. In Figure 6-2, a compensator is used to shape the dynamics of the plant.
From the results of the previous chapter, we found out that the entrainment cannot be
achieved with a Matsuoka’s neural oscillator module if the plant is unstable (like an
inverted pendulum) [Hu (1999b)]. Using a compensator, the sufficient condition for the
entrainment between the neural dynamics and the natural dynamics of the plant can be
used as a guideline for designing and tuning neural oscillator (CPG) based locomotion
control.
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Figure 6-2: Block diagram of the general nonlinear System.

Figure 6-3 shows a neural oscillator driven control sub-system for one joint of a
bipedal robot. The driving signals are generated by means of the neural oscillator module.
The impedance control provides necessary local control for postural stability. A
compensator is selected to modify the skeletal dynamics such that the dynamic
entrainment can be achieved in the control. The sensory feedback link provides the closed
loop coupling for the neural dynamic module with the bipedal natural dynamics
(structural dynamics).

Impedance]
Controller

- A | Skeletal
rk—»{ | Actuator Dynamics

Neural OscillatorT Sensory Feedback

Figure 6-3: Neural oscillator based control of one joint in a bipedal walking robot.

The motion of two legs can be considered as similar to a pendulum and an inverted
pendulum as analyzed in the previous section. For instance, the motion of a swing leg is
similar to the motion of a pendulum, and the motion of a stance leg is similar to that of an
inverted pendulum (Figure 6-4). A compensator is needed for the stance leg control since
in that case the dynamic model of a joint in the stance leg is an inverted pendulum (an
unstable system). In the following sections, we describe a control model for one joint in
the bipedal walking robot.
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Figure 6-4: A bipedal walking robot with one stance leg and one swing leg.

6.2.1 Neural oscillator module

The rhythmic motion of a joint is driven by a neural oscillator module described in Figure
6-3. The neural oscillator module is composed of four neurons with symmetric mutually
inhibitory connections. There are two sets of neural oscillator units, one for the joint in
each leg. The mutually inhibitory connections establish a 180-degree out of phase in the

motion of two respective joints in each leg. The output y, — y,is for a joint on the left leg,

and y, -y, is for a right leg joint.

6.2.2 Local controller

The compensator dynamic equation is described as
7u =~(k0, + k,6) (1)

where k and k,are constants, and ¢, is the angular position signal corresponding to joint
i.
The impedance control is expressed as

T = @, —-06)- a’zé’f) (6-2)

where a,and «,are constants and &, and ¢, are the desired position and actual position

signals corresponding to joint 7 , respectively.
The oscillator control is

£, =kt (6-3)

ol i

where ¢ is the output of the corresponding neural oscillator for joint i.

The total control signal for the joint actuator is the summation of the oscillator
control, the compensator output, and the impedance control.
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6.3 Sensory Feedback and Entrainment of Neuro-muscular-skeletal
Dynamics

Sensory feedback plays a very important role in the motor-sensory dynamic control
system (Figure 6-3). Since the dynamics change periodically during bipedal walking, the
sensory feedback signals are selected appropriately according to a global state machine.

The global state variables and walking phases are illustrated in Figure 6-5. A
variable ¢ is defined as the angular position of the leading stance leg (in double support)
or the stance leg (in single support) with respect to the vertical plane crossing the hip
joints. We use ¢ as a global gait variable in distinguishing two single support phases.
When ¢ <0 the biped is in single support phase I, i.e. toe-off phase, while it is in single
support phase II if ¢>0. There are a total of six walking phases in a cycle: double
support I, right single support I, right single support II, double support II, left single
support I, left single support II (from left to right in Figure 6-5).

right foot

left foot

Figure 6-5: Diagram describing the global variable ¢ defined with respect
to the right leg. The global states are also defined: double support I, right
single support I, right single support II, double support II, left single
support I, left single support II (from left to right).

Neural Oscillator

|

Controller

Skeletal
Dynamics

A

Switching
anism

Mech

Sensory Feedback

Figure 6-6: Switching in sensory feedback loop. The sensory feedback signal
is selected based on the walking state.

65



The choice of sensory feedback is very crucial for dynamic entrainment. In this
design, the angular position and velocity information of the corresponding joint is used
for the entrainment feedback. Such a sensory feedback signal consists of the angular
position and velocity signals of the connected lower link and the connected upper link
with respect to the joint.

Figure 6-6 shows a switching mechanism, which is used to select the appropriate
sensory feedback signals. The switching mechanism is dependent on a state machine,
which observes the walking phases by means of global gait variable @. The sensory

feedback signal selection for knee joint is expressed as
fknee = ksf(Ssl ’ grh + st ' ésh) (6-4)

where k is a feedback gain for the sensory signal, S, and S|, are the state indication

functions for stance phase and swing phases respectively. S, equals 1.0 when the leg is in
stance phase and it is zero otherwise. S is 1.0 when the leg is in swing phase and it is
zero otherwise. #,and &, are, respectively, the thigh angle and shin angle measured

with respect to the vertical plane.

6.4 Distributed Neural Oscillator Network

To achieve synergy in the overall control system, connections are needed between the
groups of neuron modules. The format and equations of compensators and impedance
controller can be the same for each joint, except for the parameters.

A distributed neural oscillator module is required in order to control all the joints
in a biped. Figure 6-7 shows a neural oscillator network for controlling a planar bipedal
walking robot. There are couplings present between the local neural oscillator units.

(1 1)

Hip Joints Knee Joints Ankle Joints

Figure 6-7: Distributed neural oscillator module for a bipedal walking robot.

In Figure 6-7, there are three neural oscillator modules. Each drives the
corresponding control model, which includes compensator, and impedance control. The
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actuator is commanded by the total effort of oscillator controller, compensator and
impedance controller.

6.5 Self-organization

The above control implementation is accomplished through local controllers.
Synchronization is achieved by the natural dynamic coupling (or called constraints) of the
leg as well as the weighted connections (inhibitory connections) between neural oscillator
modules for different joints in each leg. The neural oscillator network can define the
phase relationship between the oscillator outputs for different joints. The local controller
is the agent, which enforces the corresponding joint to follow the motion generated from
oscillator module. The overall synchronous leg motion is realized through a process
called self-organization of neural muscular skeletal system. Within the network constraints
of the distributed neural oscillator modules and the dynamics constraints, the leg motion
of the robot evolves into a synergetic motion as robot walks forward. This process can be
viewed in the animation and the stick plots of bipedal walking.

6.6 Application in Bipedal Locomotion Control

We applied the neural oscillator driven locomotion control approach to a simulated 7 link
planar bipedal walking robot, Spring Flamingo. The parameters of this robot are described
in Chapter 1. This biped has six joint actuators for the hip, knee and ankle in each leg.

As described in section 6-4, we used distributed neural oscillator modules for bipedal
locomotion control. Three neural oscillator modules are used for controlling hip joints,
knee joints and ankle joints. Each oscillator module generates command signals for the
corresponding joints on the left leg and right leg. Those three neural oscillator modules
are connected globally to provide overall dynamic synergy.

In the simulation, the robot starts to walk from zero velocity and then achieves
roughly constant walking speed. The entrainment between neural dynamics and the
dynamics of the skeletal structure is achieved by means the control system. Figure 6-8
shows the dynamic responses for the angular position signals from left hip joint, left knee
joint and left ankle joint, g-lh, g-lk, and g-la respectively on the left column. On the right
column are the responses of joint angular velocities of left hip, knee and ankle, qd-lh, qd-lk
and qd-la respectively.

Figure 6-9 shows the phase portraits of joint variables of hip, knee and ankle in the
left leg. The overall walking gait behavior is shown in a phase plot of a global variable in
Figure 6-10. A stick plot is shown in Figure 6-11 for the walking posture of the biped.
From the above figures, it is shown that the biped has achieved a stable gait since the
global variable reaches a limit cycle.

In the simulations, stable walking has been achieved, and the feasibility of our design
method has been demonstrated.
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Figure 6-8: Dynamic responses of a bipedal walking robot controlled by
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Figure 6-9: The phase portraits of the joint variables in left leg.
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Figure 6-11: Stick plot of simulated bipedal walking.
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6.7 Robustness

The robustness analysis for the above control system is very difficult and beyond the
scope of this study. Instead we can perform some robustness tests for our system. Figure
6-12 shows the results of robustness test for the simulated biped (Spring Flamingo)
controlled by neural oscillators. Two tests have been conducted: one is to push the robot
in z-direction (vertical direction) with an external force (10 Ibs) exerted on the robot body
for 0.5 seconds; the other is to apply an external force (10 lbs) in forward (x-direction) for
0.5 seconds. Figure 6-12 shows the results of latter test, in which the robot was pushed
forward. The results have shown that the robot has good robustness. It can recover
quickly after the disturbance. From the simulations, we observed that the robot had better
performance when rejecting external disturbances in z-direction.
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Figure 6-12: Responses of a simulated biped controlled by neural oscillators with
an external force disturbance (10 Ibs).

6.8 Conclusion
Locomotion control of a bipedal walking robot with neural oscillators is also
studied. With local dynamics compensation and impedance control for each joint, the

neural oscillators can propel stable walking of the bipedal robot. The guidelines for
control design proposed in Chapter 5 have been applied in the local neural oscillator

70



control for robot joints.

A switching module based sensory feedback mechanism is developed for achieving
entrainment between the neural dynamics and the robot’s structure dynamics. The
overall synergetic motion of the robot legs is achieved by means of a neural oscillator
network, which facilitates the neural oscillator modules for hip joints, knee joints and
ankle joints of the bipedal robot. A self-organization process is established by the neural
dynamics of the oscillator network and the natural dynamics of the robot while bipedal
walking proceeds.

Simulation results demonstrated the effectiveness of this design approach. With the
robustness tests, it has been shown that this method has good robustness in rejecting
external disturbances from the environments.
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Chapter 7

Switching Control of Bipedal
Locomotion

7.1 Introduction

In previous chapters, it was demonstrated that a neural oscillator based control approach
can be utilized to build stable locomotion for a bipedal walking robot, which unifies both
postural control and gait control. In this chapter, a new approach, active switching control
is proposed to achieve gait stability in bipedal locomotion control. This approach applies
nonlinear switching control theory to the locomotion control system so as to ensure
bipedal gait stability in the stable limit cycle sense. Half of the switching surfaces are
determined by means of the orbital contraction-tuning requirement.

Compared with the limit cycle analysis in passive dynamics of a biped by McGeer
(1990) and Goswami (1996), this active switching control takes advantages of the powered
joints in a biped robot and applies a feedback mechanism to tune the sub-control systems
(refer to Figure 1-4). There are two parts in this system: fundamental locomotion control
sub-systems, which generate bipedal locomotion in an open loop and switching control,
which basically adds a closed loop to the control system. With the above two parts, the
locomotion control system can achieve both postural stability and gait stability.

The dynamics derived in Chapter 4 are used in the nonlinear analysis, and the
Poincare map theory is applied in setting the multiple-switching surfaces. Section 7.2
addresses the overall control system structure. The system formulation and fundamental
and switching control is described in sections 7.3 and 7.4. In section 7.5, Poincare map
theory is used to show that gait stability is achieved in the sense of limit cycle. An
application of this control approach is presented for a bipedal walking robot, Spring
Flamingo, in section 7.6. The final section will summarize the study of switching control in
bipedal locomotion.

7.2 Control System Architecture of Bipedal Walking Robots

Figure 7-1 shows the overall control system. There are five main components: a state
machine, a contraction tuning module, a state observer, control sub-systems, and a
switching control module. The control sub-systems are provided for different walking
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phases (single support, double support). The transition from one controller to another
controller during walking is determined by the switching control module, which is based
on the state machine, orbital gait contraction tuning.

The structural dynamics of a bipedal robot change with the different phases of a
walking cycle. The dynamics are different between single support states (left single
support, right single support) and double support states. Consequently, the
corresponding controllers should change with respect to the states. A complete walking
cycle can be broken down into five states, left single support I (left toe-off), left single
support II (left leg touch-down), double support, right single support I (right toe-off), and
right single support II (right leg touch-down).

We design control sub-systems for each state and then switch from one sub-system
to another by observing the overall system state variables [Hu (2000)]. In our control
system (Figure 7-1), the switching control is the top control sub-system and supervises the
other control sub-systems. Figure 7-2 describes a state machine for five walking states and
their transitions.

Single support I (toe-off) is the walking phase during which the swing leg leaves the
ground and starts swinging forward until the swing leg passes the vertical plane above
ankle point of the stance leg. Single support II (touch-down) specifies the rest of swing
phase when the swing leg swings from the ankle position of the stance leg until it strikes
the ground.

Locomotion Generation

" i

' | Switching '

i Control Biped Robot Machine 5

Gait Stabilization : )

J |

Contraction 5 Control Physical 3 Skeletal 3 3

Scheme ;) Sub-systems o Actuators System € ‘
State P Environment

Observation |

Figure 7-1: System structure of the switching control
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7.3 Open Loop Control of Bipedal Locomotion

7.3.1 Description of dynamic system

The system dynamics are different in double support phase and single support phase, as
we have seen in Chapter 4. We formulate the general system equations as follows:

M (6,p)d+N,(8,6,p)0+G,(6,p)=D,(6,p)U, (7-1)

where M, e R"", N,eR"™, G, e R™, D, e R"™, and n is the number of d.o.f. for the

system. @ is the state vector, p is a parameter vector of step length A and stance leg
length [ etc., and U is the control signal vector. Here, the switching rule is memory-less.
Then

a(0) € {1 (double support), 2 (single support)}

is a index function for walking states.
The system switching surfaces can be described as

H,(6,6,p)=0 (7-2)

When a =1, the system is in double support phase. The system dynamic equation is
formulated in equation (2). When a =2, the system is in single support phase. The
system dynamic equations are shown in (9) and (10).

The switching surface that separates the double support phase from the single

support phase (in toe-off period), S, is

b=, (7-3)
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where d, is a constant.
The switching surface separating the double support phase from single support
phase (in touch-down period), S, is,

g =
{ 1= Co (7-4)
b, =¢

where ¢,, ¢, are constants.
7.3.2 Control schemes for generating bipedal locomotion

In double support phase (Figure 4-1), if @ is smaller than the desired value @°, the
trailing leg of the robot can push the body forward while the leading leg maintains
constant length I. Up to the limit point (a geometric constrain in the robot) €=46,, the
switching is enforced. Then the trailing leg lifts up and starts to swing. Consequently the
single support phase begins.

The command torque 7 is provided through the linear slider joint of trailing leg.
The control command f for the slider actuator is

X
Alsiné&

=+ 7-5)

r=K,(0 -6) (7-6)

If the velocity é(z]), i.e. the velocity after striking the ground, is larger than @, , then the
dynamics is immediately switched to single support, in which case, the double support
phase vanishes. When ¢9(t0+ ) < w,,, the switching surface & = d, can be adjusted,

é;)<d, <8,. (7-7)

In the single support phase (Figure 4-2), there are two time-intervals: toe-off period
and touch-down period. The control schemes are different in those cases. We illustrate the
two control schemes below.

1) Toe-off period: the trailing leg leaves ground and swings forward until it is in a
vertical position, ¢, =0, or &, =Z— g, The control in this period is

7,=0
‘ . - (7-8)
r,=K,(6,-6,)-K,b,

2) Touch-down period: the trailing leg swings forward from the vertical position and
maintains a mirror position of the stance leg with respect to the vertical plane, i.e.

the set-point for the swing leg equals &, = 7~ 26,. The corresponding control is
the same as in 1) except the set-point value.

In this period, the swing leg extends the leg and maintains constant leg length ! until
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it strikes on the ground. Then the double support phase follows the ground striking
instant.

The above control commands are called regular control efforts u (in the open loop).
In order to achieve a stable walking pattern, the control signals are subject to adjustment
Au (in the closed-loop).
Total control output:

Uy =U+ Al (7-9)

total

7.4 Switching in Locomotion Control

From human and bipedal animals’ walking, we observe that combining double support
phases (reachable and stable dynamics) and single support phases (unreachable and
unstable dynamics) can yield stable periodic bipedal walking. In this section we will show
how a suitable switching control technique can combine stable double support and
unstable single support subsystems to produce stable periodic motion, even at high
speeds where the double support phase becomes very short.

7.4.1 Characteristics of steady gaits in phase plane

In Figure 7-3, ¢ is the global variable. It refers to the angular position of a leg measured
from the straight line connecting the ankle and the hip of the leg to a vertical axis. There
are two global variables, g andg , for the left leg and right leg, respectively. Given that
the bipedal robot has symmetric structure, we assume that the dynamics for the global
variables g and g, are also symmetric.

With this global variable, ¢, the characteristic of steady gait behavior can be viewed
in the phase plane clearly. In Figure 7-4, a phase portrait of one complete walking cycle
(for one leg) is shown. Since the two legs of a biped are symmetric, this phase portrait
describes the motion of each leg. In the phase plane, we only refer to the global variable
for the left leg. As shown in Figure 7-4, there are only four phases distinguishable and
well defined in a walking cycle: double support with the left leg leading, single support
with the left leg supporting, double support with the left leg behind, and single support
with the left leg swinging.

The switching control model decides the switching points in the phase plane, ¢,

i=0,1234. At ¢, , the leg strikes the ground, then the angular velocity jumps from ¢, to ¢,
(t, =t; ). In Figure 7-4, at time ¢,, ¢,, when the swing leg strikes the ground, the control
mode switching is immediately enforced. The switching points f,and ¢, can be

appropriately selected by the switching control schemes (described in the following
section).
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switching points in this phase portrait: ¢, ¢,, ¢, and ¢,, where 1, =1, .

78



7.4.2 Switching surfaces and switching rules

There are two types of switching surfaces: one is for switching from double support to
single support (like S, in Figure 7-5); the other is for switching from single support to

double support (.S, ).
The switching rules are the following:
1) §, is determined by the switching control so that the total energy on the switching

surface converges. Therefore S, is adjustable. But there is a bound for the position
of §,.

Orin SO (S) £ G, (7-10)

where &, and &,

in structure respectively. & _ = cos™ (1/2]).

are determined by the geometric structure and geometric limitation

X

2) §, is determined by the step length and swing leg control. In our case, S, is fixed
assuming that the leg length and step length is maintained constant when the leg
touches down on the ground.

7.5 Contraction Tuning for Gait Stability

In order to achieve global gait stability, the switching control technique is used to enforce
periodic global behaviors of the biped. Our strategy in dealing with the complex
dynamics is to analyze the dynamics of global variables. If the motion of the global
variables approaches a limit cycle, we assume that the behaviors of any joint variables are
confined in the neighborhood of limit cycles. In our gait stability analysis, lateral control
stability is assumed for a simplified illustration, and all the analysis is carried out in the
sagittal plane.

We associate the periodic gait of an actuated bipedal robot with a limit cycle
behavior of the piece-wise continuous non-linear system represented by the dynamics in
single support and double support. With the help of a phase portrait of a global variable,
the existence of a limit cycle and its convergence, i.e. gait stability, can be proved. The key
point is to prove the contraction of the phase space volume as the system evolves in time.

A biped is in a stable walking gait if the behaviors of angles &, &, (see Figure 7-4)
are periodic. In other words, the gait variables ¢, @, reach limit cycles. Since ¢, ¢, are
functions of &, ¢,, instead of analyzing the dynamics of 4, #,, we can indirectly
consider proving the limit cycle of £ and &,, with appropriate control and switching
actions.

7.5.1 Poincare map

Poincare map can be applied to prove the existence of a limit cycle, as described in section
3.2.3. The process is as follows: first choose a switching surface, which is transversal to the
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dynamic motion of the system. Then analyze the discrete sequence generated by the
Poincare map. If we can prove that the above discrete-time system has the contraction
property, then we say that the dynamic motion of the system converges to a stable limit

cycle.
In a complete bipedal walking cycle (Figure 7-5), there are four switching surfaces,

which separate different dynamics in four different phases: DS,,SS,, DS,, SS,. Here DS
and SS denote double support and single support respectively.

E

Figure 7-5: A complete cycle for bipedal walking.

Because of the symmetry in the bipedal robot, we only need to consider the Poincare
Map in two switching surfaces, such as, §,, S, (Figure 7-6). For a given biped with fixed

geometric structure, in order for the biped to walk in a desired average velocity v,, we

can compute the desired angular velocity 4, . (or 4, ¢; ) at the switching surfaces.

Figure 7-6: Diagram for the Poincare map of bipedal dynamics.
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In Figure 7-6, we consider a Poincare map:
F:8 -8, F=F F

where F,: S, = S,, F,:§, > §,.

If we can prove that the Poincare map F is a contraction, we can say a periodic
motion is achieved in the biped walking. In the following section, the contraction of F is
proved by means of a switching surface Lyapunov function E (or called as energy
function).

Define the Lyapunov function E as

E=16"Mé (7-11)
Lyapunov functions for desired state:

E =167M0; (7-12)
Lyapunov function on the switching surface S;:

E =16, MG, (7-13)
Lyapunov function on the switching surface S, :

E,=16; M6, (7-14)
The total energy of the system:
E,.=E+E, (7-15)

where £ = potential energy.

The above Lyapunov functions on the switching surfaces S;,and S, can be considered the

same as the total energy of the system. Because the potential energy on the surfaces
S,and §, are the same, E, — E, is the same as the difference of the total energy on the

surfaces Syand S,,1ie. E, ,,(S,)—E,..(S,) -
The energy change is computed as,

4 t
AE =E, - E, = [Edt+ [E,dt (7-16)
‘o i
where £, =D,U,,, ac{,2}.

We can prove that when E — E’, equivalently we have
IAl=16-6" |0 (7-17)

which implies that the dynamic motion converges to the stable limit cycle. The proof of
(7-17) given E — E” is provided in Appendix C.
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7.5.2 Proof of limit cycle

The proof is constructured in two parts: First we analyze the local locomotion control
schemes in double support and single support phase, and then we make necessary
control adjustment to ensure that the surface Lyapunov functions contract to the

minimum value E’ that is required for the nominal locomotion, | E, — E" |<| E, — E" |.

A. Deterministic dynamic mapping
We first look at the control and dynamics in double support phase (between switching
surfaces S, and S,). We can convert the equations in section 2 into a state space
representation.

X =X,

= A/;lz (—-Mglcosx, +7) (7-18)

X,

where x, =6, x, = 4. Substituting in the control term, 7=K, & -6)= K, (o- 9), we
have
X =X,

. 1 7-19
X, =W(Kpa)—pr2—Mglcosx1) (7-19)

Since the time interval for double support phase is usually very small (¢, small), the state

values do not change significantly, especially for the position variable x, = &. Therefore,
local linearization allows us to find a closed form solution of the system dynamics in this
period.

Let x, = x,(0) + Ax,, x, = x,(0) + Ax, . The linearized equation is

Ax, _ 0 1 Ax, x,(0) 720
Ax, - —1gsinx, (0) —:T‘; Ax, * u, (7-20)

K,o _ K, x,(0)
M M
The eigenvalues for the system are both negative. Then we conclude that this
dynamic system is stable in double support phase, which means that we can increase the
kinetic energy by pushing the robot body with the trailing leg. From equation (7-21), we
can see that without the control input (the last two terms of (7-21)), the gravity (first term

in (7-21)) will reduce the kinetic energy, thus reduce the angular velocity 0.
The state space representation of the dynamics in single support phase is

where u = —-%cos x,(0)+ (7-21)
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X =X,
Y fed 1 1 . — 1 . —— —
X, =5-[mlasinx; - x, —mlasinx, - x, — y,cos x, + 7, — 7, ]

I, =x, (7-22)
Xy =5-[—sysinx, - x, + mlasinx, - x, + £cos(x, + x;)- 7, + , cos x,

—mgacos(x, +x,)+ 21, — 7]

Two control schemes are used in toe-off period (¢, 20) and touch-down period

(¢, <0).

When ¢, 20, ie. § +6, 2%, the control is,
7=0 (7-23)
T2=Kp(12t'_61_(92)_Kd(91+é2)' (7-24)

When ¢, <0,ie. 6 +6, <%,
=0 (7-25)

5, =K, (-x+20,-6,)-K,(6,+6,). (7-26)

B. Contraction of Poincare map
From the above analysis, the mapping from §,to S, is determined by the dynamics
(7-19). When the kinetic energy E, = E,is not big enough, the switching surface §, may

not be reached. In other words, it may not be transversal. However, if in a certain range of
the initial state &(S,), E, will be big enough so that S, can be reached. In that case,

further energy tuning (or contraction tuning) can be applicable. The following control
adjustments are based on this condition.
1) Adjusting switching surface S, .

New switching surface of S, :

g D =% + AG (7-27)
AG+ (E-E)=0 (7-28)

= AE = Mgl(sin#**" —sin*)
= 2Mgl cos(9® +242)sin(22) (7-29)

From equation (7-29), we can see that when £ > E , A@ <0, AE <0.When E<E’,
the robot is pushed forward in double support phase, during which AE > 0.
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Figure 7-7: Adjustable switching surface S, .

2) Adjusting control signal in single support phase.
Au=-KOE-E"), K,>0. (7-30)
u=U+Au (7-31)

where U is the nominal control described in section 7.3.2.
= E =60"Du=6"D(U + Au) (7-32)
AE =@DAu=-K,6"DOE -E")

Since D=1, AE, =—K (E-E")0"0 (7-33)

h
AE, = [AE,dt (7-34)

h

Then AE, <0,if E>E"; AE,>0,if ESE".
Therefore, with the above control adjustments, we see that £ — E " as t > . Then,
the Poincare mapping from S, to S, is a contraction. Hence, a limit cycle of & is

constructed (realized).

7.6 Application to a Simulated Bipedal Walking Robot

We applied the switching control approach to a simulated 7-link planar bipedal walking
robot (Spring Flamingo, a planar biped built by Jerry Pratt, MIT Leg Lab.; see Figure 2-3).
The robot has a height of 1.2 meters, leg length 0.8 meters, foot length 0.18 meters, and
body weight 14 kg. There are six joint actuators for the hip, knee, and ankle in each leg. In
our simulation, several control sub-systems have been designed for single support phases
and double support phases. The proposed switching control was implemented and
achieved stable locomotion for the simulated planar bipedal walking robot.

Figures (7-8)~(7-11) show the results from a bipedal walking simulation. The
simulation results show that the limit cycle was achieved very quickly. Hence a stable gait
is also realized. Figure 7-8 shows the phase portrait of the global variable of the left leg. We
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observe that the walking gait converged to a limit cycle quickly. Figure 7-9 shows the
phase portraits of hip, knee and ankle joints of the left leg. The behaviors of the right leg
are similar. Figure 7-10 shows the data profile of joint angular positions of the left leg and
the stride length data profile during the simulation of bipedal walking. It shows that the
stride length is almost constant in the control process, which is consistent with our
assumption in the dynamics modeling of Chapter 4. A stick diagram (in Figure 7-11)
shows that both the postural stability and gait stability are well maintained.

In the above switching control approach, bipedal gait stability is measured be means
of two global gait variables. If the limit cycle of those global variables is reached, a periodic
walking gait is realized for a bipedal walking robot. Provided that a proper height is well
maintained during walking, the constant step length will be assured. In practical, gait
stability is measured mostly by step length and time duration of a step, i.e. the step period
[Todd (1985), Vukobratovic (1990)]. The measure (or the index for gait stability) used in
this study gives stronger conditions for gait stability with respect to the practical one.
However, they are weaker conditions than Vukobratovic’s definition of bipedal gait
stability.

Taga’s demonstration with a simulated humanoid walking controlled by distributed
neural oscillations [Taga (1995)] also generated periodic bipedal walking gait. However,
considering the implementation, this switching control is much simpler for practical
applications. In addition, the systematic analysis of the latter approach can be much
easier.

Robustness tests have also been conducted with external force disturbances. We
tested the simulated robot with two different types of force disturbances exerted on the
robot body in forward (x-direction) and vertical direction (z-direction). Figure 7-12 shows
the simulation results of the robustness test. It shows that the robot was pushed forward
with10 Ibs force for 0.5 seconds and it recovered quickly after the disturbance. We found
that the robot is more robust in rejecting the disturbances in z-direction that in x-
direction.
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Figure 7-8: Simulation results of a planar biped robot. A phase plane diagram of
global variable ¢ (left leg) is shown. The dark line represents the limit cycle of the

global variable.
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Figure 7-9: Phase plane portraits of hip, knee, and ankle joints of the left leg in the
simulation.
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Figure 7-10: Simulation data profile of left leg joints. The responses (q.lh, q.1k, and q.la)
are angular positions of hip, knee and ankle joints respectively. The figure at the bottom
is the responses of the stride length, which is almost constant in the control process. The
periodic property is shown in the responses.

Figure 7-11: Stick diagram of bipedal walking. Solid lines are stick plots of
the left leg and dashed lines are the stick plots of the right leg.
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Figure 7-12: Robustness test of the simulated biped with switching control. The
external force disturbance is 10 Ibs exerted on the robot body in the forward
direction.

7.7 Summary

A nonlinear switching control approach for a stable biped locomotion was presented.
With this control technique, one can obtain gait stability and postural stability. Gait
stability was proved using nonlinear system theory.

Simulation results have shown the effectiveness of this switching control approach.
The simulated planar bipedal walking robot achieved postural stability and gait stability.

Robustness tests have been conducted with external forces exerted on the robot
body. It has been shown that the simulated biped with switching control has good
robustness in rejecting the external forces disturbances.
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Chapter 8

Control of 3-D Bipedal Walking
Robot

The control of a 3-D bipedal walking robot is implemented in this chapter. A frontal
plane controller is developed here and combined with the sagittal plane controller of the
previous chapters, disregarding the coupling between frontal and sagittal plane
dynamics. Simulations of the resulting 3-D control are presented.

8.1 Dynamic Control of a 3-D Bipedal Walking Robot

In this chapter we will extend our previous analysis of the control of 2-D walking robots
to the case of a 3-D bipedal walking robot with 12 degrees of freedom. The 3-D robot is
provided with pitch joints (hip, knee, ankle), roll joints (hip and ankle) and a yaw joint
(hip) in each leg.

The complexity of the dynamics of 3-D bipeds makes analysis of their control
designs extremely difficult. The use of simplified dynamics models offers a great
advantage in this case. We will extend the simplified dynamics models described in
Chapters 4 and 7 for the 2-D biped’s dynamics to the 3-D case by inclusion of a universal
joint at the hip. Thus the leg of the 3-D biped is modeled as having a point mass, a linear
slider joint for varying the leg length, and a universal joint at the hip.

The complexity of the control design may also be reduced by assuming that the
frontal plane dynamics and sagittal plane dynamics are not coupled or are only weakly
coupled during 3-D walking. This assumption is more plausible for straight line walking,
which is the only case we shall consider here. Other researchers who have taken this
approach include Pratt (1999), Chew (2000), Parseghian (2000). In more general walking,
a dynamic compensation may be useful to accommodate the ignored coupling between
frontal and sagittal dynamics, although we do not implement such compensation here.

In the following two sections, the separate control systems are presented for the
frontal and sagittal plane.
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8.2 Switching Control for Frontal Plane Dynamics

Several researchers discussed 3-D control recently. Kuo (1999) analyzed frontal dynamic
control and stability by resolving the sagittal dynamics in a discrete control process.
Chew (2000) proposed a linear inverted pendulum model for analyzing a stable control
approach of frontal dynamics.

Similar to Chapter 7, a switching control approach is developed in this section for 3-
D frontal dynamics. In the frontal plane, there are four switching surfaces, which are
similar to those described in the sagittal plane control of the 2-D biped, provided that
double support phases exist. Therefore, the control techniques used in Chapter 7 can be
used in frontal plane:

1) Switching from double support to single support phase, the knee joint is
extended when more energy is needed to push the robot from side to middle.

2) The following control law can be used for the dynamic control in single support
phase:

Uy = U+ AU (8-1)

where u is the regular control for maintaining the proper posture of the robot
and Au is the additional switching control term.

Au=-K (E-E")0 (8-2)

where E, E" are the actual kinetic energy and desired kinetic energy measured
at the switching surface respectively, & is the joint angular velocity, and
K, >0.

s

3) The foot placement approach [Jerry (1999), Parseghian (2000), Chew (2000)] is
also applied. The desired hip angular position of the swing leg is computed as

8.,=6-Ky (8-3)

roll

where 6, is the nominal position for the hip joint of swing leg before striking
ground and K, > 0.
The proof that a stable periodic motion in the frontal dynamic plane can be achieved

by means of the above switching control methods can be carried out in the same way as in
Chapter 7.

8.3 Control in the Sagittal Plane

The control approaches developed for a 2-D bipedal walking robot can be applied in the
sagittal control of a 3-D. The switching control technique of the 2-D biped has been
applied in this study. In this simulation of the M2 3-D biped, the switching control of the
sagittal plane is given higher priority in control switching actions. Therefore, the
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switching from double support phase to single support phase is dictated by the control of
the sagittal plane.

8.4 Example

A test of the control system of the 3-D biped robot, M2, is provided by the following
simulation, in which M2 is tasked to step in place without any forward motion. This test
focuses on the frontal plane controller, but it is a 3-D simulation.
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Figure 8-1: Dynamics responses of the joint angles in left leg. The responses from the
top are angular position of hip pitch, knee, ankle pitch, hip roll, ankle roll and hip
yaw joints in the left leg of the biped.
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Figure 8-2: Dynamic responses of the robot posture variables and the gait variable.
The responses (from the top) are body pitch, body roll, body yaw, body height, body
forward position, body lateral velocity and robot gait.

Figure 8-1 shows the dynamic responses of the joints in the robot’s left leg. Figure 8-
2 shows the dynamics of the robot body. The 3-D biped was stabilized in the frontal plane
with the switching control method described in section 8.2.

8.5 Discussions

From our study in 3-D biped control, we have shown that the frontal switching control
can provide stability in lateral motion. Also, we have observed that there are some
difficulties in coordination the dynamic control of the frontal plane and sagittal plane
when combining the two switching control sub-systems (for sagittal plane and frontal
plane) together. Further study is needed for the forward bipedal walking task, which
requires the synchronization of the dynamics in frontal plane and sagittal plane.
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Chapter 9

Conclusions

9.1 Summary of Thesis Research

Two control approaches have been proposed in this thesis, which will help in better
understanding bipedal locomotion and motor-sensory control. Also they can provide
systematic control schemes for walking robotic systems, in which the control design
process is simplified.

(@)

(b)

(d)

Neural oscillator based locomotion control. A design method for neural oscillator
based locomotion control is developed with local dynamics shaping and
appropriate sensory feedback, which is realized by a global state based sensory
signal selection scheme. A systematic analysis of neuro-skeletal dynamics in a
bipedal walking robot is provided. The intrinsic robustness of neural dynamics is
achieved by means of the dynamics entrainment in bipedal robots.

Contraction tuning based switching control. A contraction tuning based switching
control approach can achieve gait stability for a bipedal walking robot. The
existence of a limit cycle is proved by means of nonlinear system theory.

Control applications are simulated for a planar bipedal walking robot, Spring
Flamingo, and a 3-D biped, M2. Both neural-oscillator control and switching control
approaches are demonstrated in the simulations of Spring Flamingo successfully. The
switching controller is demonstrated in the frontal plane control of M2 successfully
for a stepping in place task.

Analytic tools are applied in the design and analysis of control systems for the
bipedal walking robots.
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9.2 Future Work

(@)

(b)

Neural oscillator driven control of M2. By adding lateral control, the control
algorithm for the planar biped (Spring Flamingo) with neural oscillators can be
further extended to the locomotion control of M2. Secondly, a complete theoretic
study of the neuro-skeletal dynamics of the 3-D biped is worthy of further
investigation. The proof of entrainment between the neural dynamics and the
skeletal (structural) dynamics and the environment can be accomplished by means
of simplified dynamics model.

Switching control of the 3-D biped, M2. Further efforts are needed to determine how
to combine the switching control techniques in the frontal plane and the sagittal
plane to achieve stable forward walking in 3-D. This requires the synchronization of
two switching control processes in different dynamic planes, which can be viewed
as a coordination task.

Adaptive control of bipedal walking. Based on the two control frameworks, further

study of adaptation and robustness can be executed with the expectations of
performance enhancement.
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Appendix A

Dynamics Models of a Biped

The dynamics models of a biped for single support phases and double support phase are
derived by means of the Lagrangian equation. Reasonable approximations are made in
the following dynamic models. Basically we assume:

a) The robot legs are very light. The legs of such a biped are approximated with a lumped
mass attached with a linear slider joint and a linkage (as shown in Figure A-1).

b) There is no slip between the feet and the ground.

c¢) In single support phase, the length of stance leg is fixed.

d) In double support phase, the leading leg has a constant leg length, and the distance
between two feet (step length) is also fixed.

e) During walking, the step length A in consecutive cycles is assumed to be constant.

Figure A-1: A general dynamic model.

With the above assumptions, simplified dynamics models are derived as follows.
Figure A-1 shows a general dynamic model for a biped, where the leg is approximated as
a rotating hip joint and a sliding linear joint, which represents the function of a knee and
an ankle joint.
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A1l Model in double support phase

The leg mass (3~5% of body mass in Spring Flamingo shown in Figure 1-3) is ignored in
the model of double support for simplicity of analysis. In Figure A-2, the leg length of the
leading leg is fixed. Only the trailing leg can be extended so that the robot can propel
forward. The length of leading leg is fixed in this control scheme. Therefore, there is only
one degree of freedom in the model. For convenience, we choose ¢ as a state variable
instead of x. The relationship between & and x is expressed as
2 2 2
coa=l T4 =X (A1)
204

sin@d=+/1-cos’* @

where A is the step length measuring the distance between two feet.

Figure A-2: Diagram for the dynamic model in doubles support phase.

We can derive the dynamics equation by means of the Lagrangian equation as follows,

Let
¥ =(-lcosd,lsinf)

7 =(Ising-6,lcos0- &)

V = Mglsind
L=T"-V=1MI'¢" - Mglsiné

d oL
e
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Then the system equation can be obtained, which is the same as an inverted
pendulum except the actuator force f exerted by the slider joint in the trailing leg:

= MI*@ + Mglcos@ =1 (A-2)

where 7= fx7=f Isina

) A .
sing = —siné

X
%
=7T- A‘3
4 Alsiné (A-3)
Plugging (3) into (2), we can derive the dynamic equation about variable x:
m(x)X+n(x,xX)x+ g(x)=c(x)- f (A-4)
We can also express ¢ and &, in term of &:
V4
g = (A-5)
2
A—lIcosd
- t -1 A'6
& Isin@ (4-6)

A2 Model in single support phase

Figure A-3: Diagram for a dynamic model in single support.

The leg length of the stance leg is constant in this model (Figure A-3). The choosing
variables &, &,, the gait variables &, @, are expressed:

¢1 = _(%_81) (A7)
#=0,+¢ =92_§+61
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With the Lagrangian equation, we can derive the dynamic model for the single
support phase below.
Let 7, =(—x,cosd,x,siné).

?1=(x1sint91 -8,,x,c0s8,-6,)
V=F R = X0
R =(~lcos@,Isind).
R=(siné, - 8,icosd,-8)
v =§-§=12Q2
¥, =(-lcos, —asin(b, + &, — £),Ising, —acos(b, + b, — £)).
7 =(Ising, - 6, — asin(6, + 8,)- (6, + 6,),Icos b, - 6, —acos(6, + 8,) - (6, + 8,))
=heR)
v; =(Isind, - 6, —asin(6, + 8,) - (6, + 6,))* + (Icos b, - §, — acos(6, + 6,) - (6, + §))’

= v} =P +a*(6,+6,) - 2a(6,+8,)cosb,

U

T"=1mv} + 1007 + 1my]

= T =1i[mx} +(M +m)*10} +1ma* (6, + 6,)* — mla(6, + 6,)cos b,
V =mgx sing, + Mglsiné| + mg(Isiné, —acos(é, + 6, — %)

= V =mgx sinf, + Mglsin g, + mglsinb, — mgasin(b, + 6,)

L=T -V

L ={mx} + (M +m)I* 16} +1ma’ (6, +6,)* —mla(6, + 6,)cosb,

=—{mgx, +(m+ M)gl]sin 6, + mga -sin(6, + 6,) (A-8)
doL, oL,
dt 06" 06, !
dal, o,
dt 96,” 06,

= [mx} + (M +m)* + ma*1, + ma’6, + mla -sin @, - 6, + [mgx, + (m + M)gl]cos
~mga-cos(6, +6,) =1, (A-9)

ma’*6, +ma’6, —mlaé, -sin@, —mga -cos(6, + ) = z, (A-10)
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Appendix B

Proof of Existence of a Limit Cycle for
the Oscillator Unit

Figure B-1 shows the piece-wise linear dynamics with the state space partitioned by two
switching surfaces, S, (x, =0)and S, (x, =0). As shown in the figure, 1,, 1,, t,, I,
denote the transition time from x, to x;, from x, to x,, from x, to x,, from x, to x,,

respectively.

(4, B;)

Figure B-1: Diagram for the piece-wise linear dynamic system, switching
surfaces and limit cycle of neural oscillator (5-5).

The strategy of this proof is to first express x, with time intervals t,6,t,t,. Then
we apply the switching surface equation to find the conditions for the existence of a limit
cycle. Let x, = x; € S, . In this oscillator, B, = B, i € {1,2,3,4}.

= x(f)=e™ (x, + A4 'Bu)— A7'Bu

= x —e (x)+ A'Bu)-A4'Bu, x €§,.
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Similarly,
x, = e (x' + A'Bu) — 4;'Bu
x, =eM (x, + A" Bu)— A" Bu
X, = gl (x; + A4;'Bu) - A;'Bu
Let E, =™, E, =e , E,=e™ | E,=e™ , Z = A'Bu, i e {1,2,3,4}.
= x =E(x+Z)-Z
x, =E,(x, +Z,)-Z,
x; = E3(x; +Z)-Z
X, =x,=E,(+2,)-Z,

=  x,=E{Z,+EJ[Z +E,(Z,+E(x,+Z)-2)-Z,1-Z}-Z,

x,=EZ,+E,EZ +E,EFEZ, +EFEE,FEx,+E,EEEZ —E,EFE,Z,
~-EEZ,-EZ -2,

=  x,=(-E,E,E,E)"I,

l,=EZ,+E,E.Z +E,EE,Z, +E,E.E,E\Z -FE,FE,E,Z -E,E.Z,-E,Z —Z,
Repeating the same procedure, we can solve for x,, x,, X, :
= X =E{Z,+EJ[Z,+E(Z,+E,(x +Z)~Z,)-Z]1-Z,} - Z,

x, =EZ +EEZ,+EE,EZ +EE,EFE,x +EE,FEFEZ, -EFE,EZ,
-EEZ -EZ,-Z,

x, =(1-E,E,E,E,)"I,
I,=EZ +EEZ,+EE,E/Z+EE,EE,Z,~FEEEZ,-EEZ -EZ,-Z,
= x; = Ez {Z4 + E][Zl + E4(Zz + E3(x(; + Z1) - Z1) - Zz] - Z1} - Z4

x, =E,Z,+ E,E,Z +E,E,E,Z, + E,E,E,E.x, + E,E,E,E,Z, —E,EE,Z,
~-EEZ,~-EZ -Z,

x,=(1~E,EEE)"I,
IL,=EZ,+E,EZ +E,EF,Z,+E,EEE,Z -E,EE,Z —-E,EZ,-EZ —-Z,

= X, =E{Z, +E,[Z,+E(Z,+E,(x, +Z,)-Z,)-Z,]-Z,} - Z,
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x, =EZ +EEZ +EEEZ+E,EEEx,+EEEE,Z, ~EEFEZ,
-EE,Z -EZ,-Z,

x, =(1-E,E,EE,)™"I,
I,=E,Z, +E,E,Z, +E,E,E Z, +E,E,E,E,Z, - E,E,E,Z, - E,E,Z, - E,Z, - Z,
Considering x,, x, €8,, x,, x, € S,, we have
g (@0, 6)=Cx, =0
(1, ,)=Cx, =0
g (6, 6,6,0)=Cx, =0
g.(t,1,8,5)=Cx; =0

where C,=[1 0 0 0],C,=[0 1 0 O].

Q.E.D.
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Appendix C

Contraction with Dynamics Constraint

Define a Lyapunov function (energy function) as

E=16"M§ (&)
a

vl
V2

a=mx} +(M +m)* +ma’

B =ma’

where & is the state variable (refer to Appendix A), M is the inertia matrix measured on
the switching surfaces (S, and S,). Assume that " is the velocity vector at the fixed

point on the limit cycle » and the switching surfaces (S, and S, ).
Let 8=6"+A, 60 =[6 &T,A=[A AT,
E=1( +A) M@ +A)

=16 M6& + 1A MA +§"MA (C-2)

Considering the dynamics constraint in the state space region before penetrating the
switching surface (S, or §,), we have the following relationship

A, =f(A)=-4-¢g(4) (C3)

where the function g(A,) represents the angular velocity variation of the swing leg with

respect to the angular velocity variation A, of the stance leg in a bipedal walking robot. In
this case where the control law described in Chapter 7 is applied,

A, = =24, (C4)
Then substituting (C-4) into (C-2), we get

E-E =1NMA+6" MA (C-5)
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E-E =3(af +1 S, + PAA, + A (@] + S6)) + A, B(6 +6}) (C-6)

Noticing that ¢, =26 with the given control law, we can combine (C-4) and (C-6) and
get

E-E' =1aX +Aab =Aa(tA +6) (C-7)

When E —E" — 0, since (1A, +6)#0,we get A, > 0. Then from (C-4), we know
A—>0 as E-E —0.
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