4 research outputs found

    An immersed boundary method for particles and bubbles in magnetohydrodynamic flows

    Get PDF
    This thesis presents a numerical method for the phase-resolving simulation of rigid particles and deformable bubbles in viscous, magnetohydrodynamic flows. The presented approach features solid robustness and high numerical efficiency. The implementation is three-dimensional and fully parallel suiting the needs of modern high-performance computing. In addition to the steps towards magnetohydrodynamics, the thesis covers method development with respect to the immersed boundary method which can be summarized in simple words by From rigid spherical particles to deformable bubbles. The development comprises the extension of an existing immersed boundary method to non-spherical particles and very low particle-to-fluid density ratios. A detailed study is dedicated to the complex interaction of particle shape, wake and particle dynamics. Furthermore, the representation of deformable bubble shapes, i.e. the coupling of the bubble shape to the fluid loads, is accounted for. The topic of bubble interaction is surveyed including bubble collision and coalescence and a new coalescence model is introduced. The thesis contains applications of the method to simulations of the rise of a single bubble and a bubble chain in liquid metal with and without magnetic field highlighting the major effects of the field on the bubble dynamics and the flow field. The effect of bubble coalescence is quantified for two closely adjacent bubble chains. A framework for large-scale simulations with many bubbles is provided to study complex multiphase phenomena like bubble-turbulence interaction in an efficient manner

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    American Reconstitution: How The States Stabilize American Constitutional Development

    Get PDF
    The American Constitution is exceptionally stable. Americans have proposed and ratified only one national constitution with only twenty-seven amendments. In contrast, the American states have proposed 354 constitutions, held 250 conventions, and ratified 146 constitutions with at least 5,900 amendments. Why is the federal Constitution so much more stable than the state constitutions? Many scholars cite the federal Constitution’s higher procedural barriers to revision. But this dissertation asserts that ongoing state constitutional revision resolves national constitutional controversies, preempting federal constitutional amendment and quieting national inter-branch conflict. The dissertation tests this claim in two ways. First, it compares all attempted federal and state constitutional revision since 1776, drawing on an original dataset of all proposed state constitutions to show that federal and state constitutional revision are closely associated over time. Second, the dissertation disaggregates this trend by topic, offering case studies in which state constitutional revision preempted or resolved national constitutional conflicts. Since the states constrain the scope of national constitutional controversies, one cannot fully understand the political development of the national branches or Constitution without the states

    Solutions for large scale, efficient, and secure Internet of Things

    Get PDF
    The design of a general architecture for the Internet of Things (IoT) is a complex task, due to the heterogeneity of devices, communication technologies, and applications that are part of such systems. Therefore, there are significant opportunities to improve the state of the art, whether to better the performance of the system, or to solve actual issues in current systems. This thesis focuses, in particular, on three aspects of the IoT. First, issues of cyber-physical systems are analysed. In these systems, IoT technologies are widely used to monitor, control, and act on physical entities. One of the most important issue in these scenarios are related to the communication layer, which must be characterized by high reliability, low latency, and high energy efficiency. Some solutions for the channel access scheme of such systems are proposed, each tailored to different specific scenarios. These solutions, which exploit the capabilities of state of the art radio transceivers, prove effective in improving the performance of the considered systems. Positioning services for cyber-physical systems are also investigated, in order to improve the accuracy of such services. Next, the focus moves to network and service optimization for traffic intensive applications, such as video streaming. This type of traffic is common amongst non-constrained devices, like smartphones and augmented/virtual reality headsets, which form an integral part of the IoT ecosystem. The proposed solutions are able to increase the video Quality of Experience while wasting less bandwidth than state of the art strategies. Finally, the security of IoT systems is investigated. While often overlooked, this aspect is fundamental to enable the ubiquitous deployment of IoT. Therefore, security issues of commonly used IoT protocols are presented, together with a proposal for an authentication mechanism based on physical channel features. This authentication strategy proved to be effective as a standalone mechanism or as an additional security layer to improve the security level of legacy systems
    corecore