4,285 research outputs found

    Measurement error caused by spatial misalignment in environmental epidemiology

    Get PDF
    Copyright @ 2009 Gryparis et al - Published by Oxford University Press.In many environmental epidemiology studies, the locations and/or times of exposure measurements and health assessments do not match. In such settings, health effects analyses often use the predictions from an exposure model as a covariate in a regression model. Such exposure predictions contain some measurement error as the predicted values do not equal the true exposures. We provide a framework for spatial measurement error modeling, showing that smoothing induces a Berkson-type measurement error with nondiagonal error structure. From this viewpoint, we review the existing approaches to estimation in a linear regression health model, including direct use of the spatial predictions and exposure simulation, and explore some modified approaches, including Bayesian models and out-of-sample regression calibration, motivated by measurement error principles. We then extend this work to the generalized linear model framework for health outcomes. Based on analytical considerations and simulation results, we compare the performance of all these approaches under several spatial models for exposure. Our comparisons underscore several important points. First, exposure simulation can perform very poorly under certain realistic scenarios. Second, the relative performance of the different methods depends on the nature of the underlying exposure surface. Third, traditional measurement error concepts can help to explain the relative practical performance of the different methods. We apply the methods to data on the association between levels of particulate matter and birth weight in the greater Boston area.This research was supported by NIEHS grants ES012044 (AG, BAC), ES009825 (JS, BAC), ES007142 (CJP), and ES000002 (CJP), and EPA grant R-832416 (JS, BAC)

    Modeling Incomplete Longitudinal Data

    Get PDF
    This article presents a review of popular parametric, semiparametric and ad-hoc approaches for analyzing incomplete longitudinal data

    Semiparametric Regression During 2003–2007

    Get PDF
    Semiparametric regression is a fusion between parametric regression and nonparametric regression and the title of a book that we published on the topic in early 2003. We review developments in the field during the five year period since the book was written. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application

    The Estimation of Item Response Models with the lmer Function from the lme4 Package in R

    Get PDF
    In this paper we elaborate on the potential of the lmer function from the lme4 package in R for item response (IRT) modeling. In line with the package, an IRT framework is described based on generalized linear mixed modeling. The aspects of the framework refer to (a) the kind of covariates -- their mode (person, item, person-by-item), and their being external vs. internal to responses, and (b) the kind of effects the covariates have -- fixed vs. random, and if random, the mode across which the effects are random (persons, items). Based on this framework, three broad categories of models are described: Item covariate models, person covariate models, and person-by-item covariate models, and within each category three types of more specific models are discussed. The models in question are explained and the associated lmer code is given. Examples of models are the linear logistic test model with an error term, differential item functioning models, and local item dependency models. Because the lme4 package is for univariate generalized linear mixed models, neither the two-parameter, and three-parameter models, nor the item response models for polytomous response data, can be estimated with the lmer function.

    Multivariate generalised linear mixed-effects models for analysis of clinical trial-based cost-effectiveness data

    Get PDF
    Economic evaluations conducted alongside randomized controlled trials are a popular vehicle for generating high-quality evidence on the incremental cost-effectiveness of competing health care interventions. Typically, in these studies, resource use (and by extension, economic costs) and clinical (or preference-based health) outcomes data are collected prospectively for trial participants to estimate the joint distribution of incremental costs and incremental benefits associated with the intervention. In this article, we extend the generalized linear mixed-model framework to enable simultaneous modeling of multiple outcomes of mixed data types, such as those typically encountered in trial-based economic evaluations, taking into account correlation of outcomes due to repeated measurements on the same individual and other clustering effects. We provide new wrapper functions to estimate the models in Stata and R by maximum and restricted maximum quasi-likelihood and compare the performance of the new routines with alternative implementations across a range of statistical programming packages. Empirical applications using observed and simulated data from clinical trials suggest that the new methods produce broadly similar results as compared with Stata’s merlin and gsem commands and a Bayesian implementation in WinBUGS. We highlight that, although these empirical applications primarily focus on trial-based economic evaluations, the new methods presented can be generalized to other health economic investigations characterized by multivariate hierarchical data structures
    corecore