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This article presents a review of popular parametric, semiparametric and ad-hoc approaches for analyzing 
incomplete longitudinal data. 
 
Key words: longitudinal data, missing data, multiple imputation, ignorability, estimating equations, 
selection models, pattern-mixture models 
 
 

Introduction 
 
Missing observations are common in 
longitudinal studies. This article focuses on 
attrition, where responses are available for a 
subject until a certain occasion, and missing for 
all subsequent occasions. In the presence of 
incomplete data, the risk of reaching incorrect 
decisions is higher, because missing data may 
degrade the performance of confidence intervals, 
bias parameter estimates and reduce statistical 
power. Handling incomplete data generally 
requires special techniques and inferential tools. 
In this article, commonly used ad-hoc methods, 
semiparametric methods and likelihood-based 
models for incomplete repeated-measures data 
were reviewed and these approaches were 
applied to a real dataset. 

The real data example pertains to a 
psychiatric trial in which dropout behavior 
appears to be quite different in the treatment and 
control groups. Data were obtained from the 
National Institute of Mental Health 
Schizophrenia Collaborative Study, where 
patients were randomly assigned to receive one 
of three anti-psychotic medications or a placebo.  
 
 
Hakan Demirtas is an Assistant Professor of 
biostatistics at the University of Illinois at 
Chicago. His research interests are the analysis 
of incomplete longitudinal data, multiple 
imputation and Bayesian computing. E-mail 
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As noted by Hedeker and Gibbons 

(1997), performance of the three drugs was quite 
similar; following their approach, the subjects 
from the three drug treatments were collapsed 
into a single group. The outcome of interest, 
severity of illness, was measured on an ordinal 
scale ranging from 1 (normal) to 7 (extremely 
ill), which was treated as continuous. 
Measurements were planned for weeks 0, 1, 3, 
and 6, but missing values occurred primarily due 
to dropout. A few patients had missing 
measurements and subsequently returned; for 
simplicity these have been removed. A small 
number of measurements were also taken at 
intermediate time points (weeks 2, 4, and 5) 
which were also ignored. These exclusions 
reduced the sample from 1,603 subject-
observations to 1,500. 

With these exclusions, the sample 
contains 312 patients who received a drug and 
101 who received a placebo. In the drug group, 3 
patients dropped out immediately after week 0, 
27 dropped out after week 1, 34 dropped out 
after week 3, and 248 completed the study. In 
the placebo group, no patients dropped out after 
week 0, 18 dropped out after week 1, 19 dropped 
out after week 3, and there were 64 completers. 
In this trial, the mean profile for placebo group 
is slightly declining, indicating mild 
improvement over time, but the drug group 
declines more dramatically. Dropout affects the 
two groups differently. If patients are classified 
as dropouts or completers, the dropouts in the 
placebo group appear to be more severely ill 
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than the completers and show less improvement. 
In the drug group, however, the opposite occurs: 
dropouts appear to be less severely ill than 
completers and improve more rapidly. Mean 
profiles for dropouts and completers in the two 
groups are shown in Figure 1. One plausible 
explanation is that those receiving the placebo 
who experience little or no improvement may be 
leaving the study to seek treatment elsewhere. 
On the other hand, those in the drug group who 
improve dramatically may be dropping out 
because they feel that treatment is no longer 
necessary. 
 
 

 
 
Figure 1. Mean observed response in psychiatric 
trial by treatment group (placebo, drug) and 
dropout status (dropout, completer), plotted 
versus T = square root of week. 
 

Organization of this article is as follows: 
An overview is provided with background 
information on incomplete longitudinal data and 
ignorability. Popular longitudinal modeling 
techniques such as linear and nonlinear mixed 
models, semiparametric marginal approaches 
and their weighted versions, single imputation 
and its variants, multiple imputation, selection 
and pattern-mixture models are presented along 
with the implications of missing data for these 
commonly used methods. In the portion dealing 
with application, most of the mentioned methods 
were applied to the psychiatric trial dataset and 
findings were compared. Conclusions include 
remarks and discussion stressing the importance 
of sensitivity analyses and robustness studies. 
 
 
 

Overview 
 
Mechanisms for missing data and dropout 

The properties of missing-data methods 
depend on the manner in which data became 
missing; every missing-data technique makes 
implicit or explicit assumptions about the 
missing-data mechanism. In this section, major 
classes of missing-data mechanisms were 
discussed, emphasizing the taxonomy introduced 
by Rubin (1976).  

Many missing-data procedures in use 
today assume that missing values are missing at 
random (MAR) (Rubin, 1976). Let Y denote the 
complete set of responses for all subjects, and 
suppose that the distribution of Y depends on a 
set of unknown parameters of interest θ . Let R  
be the associated set of missing-value indicators. 
The elements of R  take the values 1 or 0, 
indicating whether the corresponding elements 
of Y are observed or not. The conditional 
distribution of R  given Y depends on the set of 
parameters δ . Let ( , )obs misY Y Y= denote the 
partition of the data into the respective sets of 
observed and missing values. Finally, let 
( , )obsy r be the realized value of ( , ).obsY R  
The missing values are said to be MAR  if 

( | , , ) ( | );obs obs mis obs obsPP R r Y y Y R r Y y= = = = =δ δ
holds for all possible δ . Under MAR, the 
probability distribution of the indicators of 
missingness may depend on the observed data 
but must be functionally independent of the 
missing data. Intuitively speaking, MAR means 
that once appropriate account is taken of what 
have been observed, there remains no 
dependence of the missingness on unobserved 
quantities. A simple example is a two-occasion 
study of blood pressure where subjects are called 
back for the second measurement if the first 
measurement is high. This example is MAR 
because missingness on the second measurement 
depends only on the value of the first 
measurement which is always observed. 

An important special case of MAR is 
missing completely at random (MCAR). Under 
MCAR,  ( | , ; ) ( ; )obs obs misP R r Y y Y P R rδ δ= = = =  
for all possible δ . In this case, the response 
probabilities are independent of both the 
observed and unobserved parts of the dataset. 
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Suppose, for example, in a two-occasion study 
of blood pressure, a randomly chosen subset of 
subjects is called back for a second 
measurement. In this case, the missing-data 
mechanism is MCAR, because the probability 
that the second measurement is missing does not 
depend on blood pressure at either occasion. 
 If MAR is violated, the response 
probabilities depend on unobserved data; in this 
case, the missing values are said to be missing 
not at random (MNAR). MNAR situations 
require special care; to obtain correct inferences, 
one must specify a joint probability model for 
the complete data and the indicators of 
missingness. 
 
Types of dropout 

 When missing data arise only through 
dropout, R  can be summarized in a single 
variable that records the first time at which a 
value is missing or the time of a subject’s last 
observed measurement. Special terminology has 
evolved for dropout, and this terminology is best 
understood by its relationship to MAR, MCAR 
and MNAR (Diggle & Kenward, 1994; Little 
1995; Verbeke & Molenberghs, 2000). 

Under MAR dropout, the probability of 
dropout may depend on observed covariates and 
past responses. Nonignorable dropout (ND) is 
used interchangeably with MNAR. Under ND, 
the dropout probability may depend on 
unobserved covariates, current and future 
unobserved responses. Little (1995) clarified the 
role of covariates in this classification scheme. 
He used “covariate-dependent dropout” (CDD) 
for the situation where dropout may depend on 
completely observed covariates. Under CDD, 

  
( | , , ; ) ( | ; )misobs obsP R r Y y Y x P R r x= = = =δ δ  

where x  is the realized value of fully observed 
covariates X. A clinical trial where dropout rates 
differ among treatment groups, but otherwise 
unrelated to responses, would be an example of 
this type. Diggle and Kenward (1994) use the 
terms random dropout (RD) for MAR dropout, 
informative dropout (ID) for nonignorable 
dropout, and completely random dropout (CRD) 
if the dropout does not depend on responses or 
covariates. Little’s terminology is more 
consistent with the literature on general missing-

data problems, because the term completely 
random has historically been reserved for 
situations where missingness does not depend on 
any variables at all. 
 
Ignorability 

An important concept in the theory of 
missing data, closely related to MAR, is 
ignorability. A missing-data mechanism is 
ignorable if (a) the missing data are MAR and 
(b) the parameters δ and θ  are distinct (Little & 
Rubin, 2002). From a frequentist perspective, 
distinctness means that the joint parameter space 
of ( , )δ θ  is the Cartesian cross-product of the 
individual parameter spaces for δ  and θ . From 
a Bayesian perspective, it means that the joint 
prior distribution of ( , )δ θ  factors into 
independent priors for δ  and θ  (Schafer, 
1997a). 

The term ignorable suggests that the 
missing-data mechanism can, in some sense, be 
ignored when performing statistical analyses. 
Rubin (1976) precisely explained what it means 
to ignore the missing-data mechanism, both 
from frequentist and likelihood/Bayes 
standpoints, and provided conditions under 
which ignoring the missing-data mechanism is 
valid for inferences about θ . In the frequentist 
case, ignoring the missing-data mechanism 
means fixing R  at its realized value and using  

( | ; , )obsP Y R r= θ δ  as a repeated-sampling 
distribution. That is, it is pretended that obsY  is 
the data that had been intended to collect. In the 
likelihood/Bayes situation, ignoring the missing-
data mechanism means using 

 
( , ; )obs obs mis misP Y y Y dY=∫ θ  

 
as the likelihood function for θ . The conditions 
under which these approaches are valid differ. In 
the likelihood/Bayes case, ignoring the missing-
data mechanism is valid when are distinct and 
the missing data are MAR. In the frequentist 
case, the stronger condition of MCAR is needed.  

This definition of ignorability seems to 
implicitly assume that one is working within a 
likelihood-based or Bayesian context. The 
reason why the missing-data mechanism can be 
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ignored under this condition is that joint log-
likelihood for δ  and θ  partitions as 
( , ; , ) ( ; ) ( ; )obs obsl y r l y l rθ δ θ δ= + . Information 

about the complete-data population parameter  is 
contained fully in the first term; inferences about 
θ  are unaffected by R , and there is no need to 
model ( | , )P R r y δ= . However, if one is not 
working in likelihood-based or Bayesian 
frameworks, one may need to formally model  
R  even when the missing data are MAR. 
Therefore, the appropriateness of not modeling 
the missing-data process is not a property of the 
mechanism alone, but a property of the 
mechanism and the method of analysis. 

The precise meaning of ignorability and 
its implications have often been misunderstood 
and misapplied, because many statistical 
procedures in use today are actually a hybrid of 
likelihood and frequentist approaches. For 
example, the use of an expected information 
matrix is frequentist, because it takes an 
expectation over the distribution of all possible 
data values. Helpful discussion and clarification 
of this point is given by Kenward and 
Molenberghs (1998). 
 
Nonignorable modeling 

Any violation of MAR leads to a 
nonignorable missingness mechanism. No 
simplification of the joint distribution is 
possible, and inferences can only be made about 
marginal responses by making further 
assumptions about which the observed data 
alone carry no information (Little & Rubin, 
2002; Little, 1995). Under MNAR, the 
missingness mechanism does not drop out of the 
likelihood; the missingness indicators provide 
information about the parameters of the 
complete-data population. In these situations, 
assuming MAR may lead to biased estimates of 
parameters of the complete-data population; 
joint modeling of longitudinal response and 
dropout mechanism is needed. 
 
Completers only analysis 

Omitting the subjects with missing 
observations tends to introduce bias, to the 
extent that the incompletely observed cases 
differ systematically from the complete cases. 
Completers may be unrepresentative of the 

population for which the inference is usually 
intended: the population of all cases, rather than 
the population of cases with no missing data. In 
longitudinal studies with human or animal 
subjects, not all subjects complete the study and 
especially when completers and dropout seem to 
follow different trajectories, analyzing only the 
completers may be very misleading and 
inefficient. 

 
Last observation carried forward (LOCF) 

LOCF is often used in the analyses of 
clinical trials for FDA (Food and Drug 
Administration). It tends to understate 
differences in estimated time trends between 
treatment and control groups. Although LOCF is 
thought to be conservative, standard errors are 
biased downward as well, so it is not necessarily 
conservative. LOCF seems appealing only when 
between subject variation is high but responses 
within a subject is relatively stable over time. In 
this case, last observation may be a decent 
predictor for missing data points. 

 
Mean imputation 

Imputing the subject-mean seriously 
distorts trends over time and within-subject 
covariance structure. Imputing the occasion-
mean distorts trends within subjects and 
between-subject variation. Both mean 
imputation methods introduce bias into 
longitudinal analyses and seriously impair 
standard errors and hypothesis tests. 

 
Other single imputation techniques 

Imputing from conditional means (e.g. 
through a regression prediction), from 
unconditional distributions (e.g. hot deck) or 
conditional distributions (through a predictive 
distribution) have been applied to longitudinal 
data, but the shortcomings of these methods 
have been well-documented (Little & Rubin, 
2002; Schafer & Graham, 2002). 

Single imputation strategies outlined 
above are designed to precisely predict the 
missing values. However, the goal of a missing-
data procedure is to draw accurate inferences 
about the population quantities (e.g. mean 
change over time), not to accurately predict 
missing values. With imputation, the best way to 
achieve this goal is to preserve all aspects of the 
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data distribution (means, trends, within- and 
between-subject variation, etc.). Ad-hoc 
imputation methods inevitably preserve some 
aspect, but distort others. 

 
Multiple imputation 

Multiple imputation (MI) is a Monte 
Carlo technique (Rubin 1987, 1996) in which 
the missing values are replaced by a set of 

1m >  simulated versions of them. These 
simulated values are drawn from a Bayesian 
posterior predictive distribution for the missing 
values given the observed values and the 
dropout times. 

Carrying out MI requires two sets of 
assumptions. First, one must propose a model 
for the data distribution which should be 
plausible and should bear some relationship to 
the type of analysis to be performed. In the case 
of longitudinal analyses, the model should be 
capable of preserving the correlation structure 
and time trends within individuals. The second 
set of assumptions pertains to type of 
missingness mechanism. An assumption of 
MAR is commonly employed for MI. However, 
the theory of MI does not necessarily require 
MAR; MI may also be performed under 
nonignorable models. 

The key idea of MI is that it treats missing 
data as an explicit source of random variability 
to be averaged over. The process of creating 
imputations, analyzing the imputed datasets, and 
combining the results is a Monte Carlo version 
of averaging the statistical results over the 
predictive distribution of the missing data, 

 
( | ) ( | ) .mis obs misP Y P Y Y dYθ∫  

 
In practice, a large number of multiple 

imputations is not required; sufficiently accurate 
results can often be obtained with 10m ≤ . Once 
the imputations have been created, the m  
completed datasets may be analyzed without 
regard for dropout; all relevant information on 
nonresponse is now carried in the imputed 
values. Once the quantities have been estimated, 
the m  versions of the estimates and their 
standard errors are combined by simple 
arithmetic as described by Rubin (1987). Let 

( )ˆ jQ  and ( )jU  denote the estimate and 
standard error for a scalar population quantity 
Q  obtained from imputed dataset 1,...,j m= . 

The overall estimate of Q  is 1 ( )ˆ j
j

Q m Q−= ∑ , 

and the overall standard error is T, 
1(1 )T U m B−= + + , where 1 ( )j

j
U m U−= ∑  

and 1 ( ) 2ˆ( 1) ( )j
j

B m Q Q−= − −∑ . Interval 

estimates and tests may be based on the 
approximation 1/ 2( ) ,Q Q T tγ

−− ∼  where 
1 2( 1)(1 )m rγ −= − + , 1(1 ) /r m B U−= + , and 

the estimated rate of missing information is 
approximately /(1 )r r+ . Other rules for 
combining multidimensional estimates and test 
statistics are reviewed by Schafer (1997a Chap. 
4). 

MI may not be the best choice for every 
analysis, but it is a handy statistical tool and a 
valuable addition to a researcher’s 
methodological toolkit. MI is attractive for a 
number of reasons. First, it allows researchers to 
use their favorite models and software; an 
imputed dataset can be analyzed by virtually any 
method that would be appropriate if the data 
were complete. Second, there are many classes 
of problems for which no direct ML procedure is 
available. For example, in longitudinal analyses, 
there is no direct ML method for incomplete 
covariates when occasions of measurement vary 
by individual. Third, MI singles out missing data 
as a source of random variation distinct from 
ordinary sampling variability. Finally, the 
separation of the imputation stage from the 
analysis stage provides flexibility to the entire 
modeling process. 
 
Simple hypothesis testing and classical analysis 
of variance (ANOVA)  
 Let 1 2, ... ,

( , )T
i i ipi

y y y y=  denote the 

responses for subject i , 1, 2,...,i m=  at a 
common sets of occasions 1 2( , ,..., )pt t t t= . If 
there are no missing values, it is said that the 
data are balanced in the sense that all subjects 
are measured at a common set of occasions. 
Simple t-tests based on change in scores (e.g. 
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1ip iy y− ) can be used to test the mean equality 
hypothesis. As a generalization, one may assume 

( , )iy N µ Σ∼  where 1 2( , ,..., )T
pµ µ µ µ= . The 

classical ANOVA decomposition for repeated 
measures can be used to determine if means at 
each time point are equal. Let SSA, SSB and 
SSAB denote sums of squares for subjects, 
occasions and subject-occasion interactions with 
degrees of freedom 1, p-1 and (m-1)(p-1), 
respectively. Under the null hypothesis that all 
occasion-means are equal (µ1=µ2=...=µp), the 

test statistics ( 1)A ABF SS m SS= −  is 
distributed as ( 1),( 1)( 1)p m pF − − −  provided that Σ 
satisfies the Huynh-Feldt circularity condition 
( '( ) 2ij ij
Var y y λ− =  for 'j j≠ , for some λ>0.) 

(Huynh & Feldt, 1970). One example of 
circularity is compound symmetry, which arises 
when ij i j ijy α µ ε= + +   where 2(0, )ij N ξε σ∼  

and 2(0, )ij N ξε σ∼  so that 2 2( )ijV y α ξσ σ= +  

and 2 2 2( , ) /( )ij ikCorr y y α α ξσ σ σ= + . When the 
circularity assumption is violated, one can use 
more general multivariate regression models in 
which Σ is allowed to be unstructured (Seber, 
1984).  

When missing values destroy the 
balance, data analysts sometimes discard the 
subjects until balance is restored, or they impute 
missing values in such a way that the sums of 
squares are not distorted so that procedures 
requiring balanced data may be applied (Dodge, 
1985). In agricultural experiments or laboratory 
settings, data are often balanced or nearly so. 
But in longitudinal studies with human or 
animal subjects, measurements at common sets 
of occasions are unlikely, so classical ANOVA 
is less common in these situations. 
 
Linear mixed models 

Linear mixed models (Laird & Ware, 
1982) extend classical ANOVA to handle 
unbalanced data by relying on improved 
computational methods. That is, the inferential 
strategy is changed from exact distributional 
results to ML estimation. In linear mixed 
models, the variation in subjects’ longitudinal 

profiles arises at two levels: At the first level, 
the vector of repeated measurements for each 
subject is related to time and time-varying 
covariates by a relatively small number of 
estimated subject-specific regression 
coefficients. 

At the second level, one relates these 
coefficients to additional time-varying and static 
covariates such as treatment, baseline 
characteristics, gender and so forth. The linear 
mixed-model paradigm combines these two 
stages into a single modeling procedure. These 
models—which are also known as multilevel 
models, linear mixed-effects models, random-
effects models, random-coefficient models and 
hierarchical linear models—have been 
implemented in many software packages, 
including HLM (Bryk, Raudenbush & Congdon, 
1996), MLwiN (Rasbash et al., 2000), the S-
PLUS function lme (Pinheiro & Bates, 2000), 
SAS PROC MIXED (Littell et al., 1996) and 
Stata (Stata Corp., 1997). 

Adopting the notation of Laird and Ware 
(1982), let  1 2, ... ,( , )

i

T
i i i iny y y y=  denote the 

responses for subject i. The number of responses 
and the times of measurement may vary 
arbitrarily from one subject to another. The 
model is 

 
                        i i i i iy X Z bβ ε= + +                  (1) 
 
where iX  (ni×p) and Zi (ni×q) contain 

covariates, β  are fixed effects, and ib and iε  
are unobservable random errors distributed as  

  
                         (0, )i qb N ψ∼                   (2) 
                                                           
                          2(0, )

ii n iN Vε σ∼                   (3) 
 
independently for 1,...,i m= . In this model, the 
vector of repeated measurements on each subject 
follows a linear regression model where some of 
the regression coefficients are common to 
population, whereas other coefficients vary by 
subject. Because the model does not assume any 
particular form for iX  and iZ , it can handle 
time-varying covariates and unequally spaced 
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responses. The columns of iZ  usually span a 
subspace of the linear space spanned by iX . 
Centering the distribution of ib  at zero causes 
β  to become the population-averaged 
regression coefficients, and the random effects  

1,..., mb b  become perturbations due to inter-
subject variation. When the number of 
measurements is small, the identity matrix ( iI ) 
is typically used for iV . Patterned correlation 
structures (auto-regressive, banded) are possible, 
in which case iV  contains some unknown 
parameters.  

Averaging over the distribution of the 
latent random effects ib , the marginal 
distribution of iy  is 

 
                    ( , ),i i iy N X β Σ∼                         (4)  
   
where  2T

i i i iZ Z Vψ σΣ = + . Therefore, the 
elements of β  represent the effects of 
covariates in iX  on the mean response, both for 
a single subject (i.e. given ib ) and on average 
for the population.  
 When the data entering the linear mixed 
model are unbalanced by design, ML estimation 
using a likelihood derived from (4) is entirely 
appropriate. If some responses for some subjects 
are missing, one may omit the missed occasions 
and apply ML to the reduced data; this is 
appropriate if the missing responses are MAR.  
 
Nonlinear mixed models 

Nonlinear mixed models generalize the 
linear mixed models to situations where the 
response is not necessarily normal. They are also 
known as generalized linear mixed models or 
generalized linear models with random effects. 
In these models, one supposes that ijy  belongs 

to an exponential family with ( )ij ijE y µ=   and   

1( ,..., )
i

T
i i inµ µ µ= . The link function—the 

function that determines the relationship 
between expected mean and covariates— is 

( )i i i ih X Z bµ β= + . If h is the identity function 

and the responses are normal, then this reduces 
to a linear mixed model. More generally, the 
nonlinear mixed model can be applied to 
repeated observations of binary and count 
variables.  

Except in special cases, the likelihood 
function for nonlinear mixed models  
 
              ( | ) ( )i i i i

i

L P y b P b db= ∏∫              (5) 

 
cannot be computed analytically; it can only be 
approximated by numerical techniques such as 
Gauss-Hermite quadrature (Abramowitz & 
Stegun, 1964), adaptive quadrature (Kronrod, 
1965) and Laplace expansions (Stroud, 1971). 
Algorithms for maximizing (5) are considerably 
more complicated than for the normal linear 
mixed model. Early programs used a technique 
called penalized quasi-likelihood (PQL) 
(Breslow & Clayton, 1993), whereas later 
programs (HLM, MLWin, PROC NLMIXED) 
use true ML. True ML is better, because the 
resulting estimates tend to be less biased. 
Bayesian inference is also possible by Markov 
Chain Monte Carlo (MCMC) (e.g., Spiegelhalter 
et al., 1999).  

In the linear mixed model, β is the effect 
of iX  on iµ  both for a single subject and on 
average for the population. In the nonlinear case, 
however, the distinction between subject-
specific (SS) and population- averaged (PA) 
effects naturally emerges: 

1( | ) ( )ij i i i iE y b h X Z bβ−= +  is the SS mean 
response, whereas, 

1[ ( | )] ( ) ( )ij ij i i i i iE E y b h X Z b dP bµ β−= = +∫  

is the PA mean response. SS and PA effects 
have different interpretations and are appropriate 
in different circumstances (Zeger, Liang & 
Albert, 1988).  

When missing data appear in nonlinear 
mixed models, as long as true ML or Bayesian 
techniques (not PQL) are used, the implications 
of missing responses are no different from 
normal linear mixed models; the procedures 
work as long as MAR is satisfied. 
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Semiparametric marginal models 
Nonlinear mixed models are based on an SS 

formulation. Another way to formulate a model 
is to specify PA effects directly. Liang and 
Zeger (1986) proposed an estimation technique 
called generalized estimating equations (GEE) 
based on a multivariate version of quasi-
likelihood (McCullagh & Nelder, 1989; 
Wedderburn, 1974). This formulation is 
semiparametric; rather than specifying a full 
distribution for the response, one only needs to 
specify its first two moments. That is, (a) the 
mean response as a function of covariates and 
(b) variances and covariances of the response as 
a function of the mean response are specified. In 
this approach, a broad class of non-Gaussian 
outcomes can be accommodated. Quasi-
likelihood modeling is theoretically attractive, 
because it yields consistent and asymptotically 
normal estimates even when the covariance 
structure is misspecified. For this reason, GEE 
methodology has become quite popular for the 
analysis of longitudinal data. 

The model is formulated as follows. Let 
1,...,i m=  and in  denote the subjects and the 

number of measurements for each subject, 
respectively. Let  1( ,..., )

i

T
i i inµ µ µ=  be the 

expectation of 1 2, ... ,( , )
i

T
i i i iny y y y=  which is 

regarded as a function of covariates: 
1( )i ih Xµ β−=  where β  is a 1p×  vector of 

unknown coefficients, iX  is an in p×  
covariate matrix, and h is the link function. The 
covariance matrix for iy , denoted by iV , is a 
function of iµ  (and hence β ) and additional 
unknown parameters.  

The estimate of β  is obtained as the 
solution to the quasi-score equations  
 

     1

1
( ) ( ) 0

m
T
i i i i i i

i
S X AV yβ µ−

=

= ∆ − =∑         (6) 

 
where  /i iβ µ∆ = ∂ ∂ . The covariance matrix for  

iy  is usually parameterized as 
1/ 2 1/ 2( ) /i i i iV A M Aα= Φ , where iA  is i in n×  an 

diagonal matrix with ( )ijg µ  as the thj  diagonal 
element; g is a hypothesized variance function; 

( )iM α  is a working correlation matrix and α  
is a vector that fully characterizes ( )iM α ; and 
Φ  is a scale parameter. Therefore, the terms in 
equation (6) depend on β , α  and Φ , but β  is 
the parameter of interest whereas α  and Φ  are 
nuisance parameters. Solutions are obtained 
using iteratively reweighted least squares. At 
each iteration of the algorithm, one must plug in 

m − consistent estimates of α  and Φ ; for 
details, see Liang and Zeger (1986).The solution 
to GEE, β̂ , is m − consistent, asymptotically 
normal, and efficient if the hypothesized 
covariance structure is correct (Zeger and Liang, 
1986). But the popularity of the method stems 
from the fact that approximate unbiasedness and 
normality hold even if assumptions about second 
moments are wrong (Diggle et al., 2003). If the 
assumed covariance structure is correct, a 
consistent estimator of Cov( β̂ ) is  
 
                           1( )T T TX AA X −∆ ∆                (7) 
 
where iX  is the matrix of stacked iX ’s, A  is 
the stacked iA ’s and ∆  is the stacked i∆ ’s. If 

( )i iV Cov y≠ , (7)  can be be biased. In that 

case, however, a consistent estimator of Cov( β̂ ) 
can be obtained by the Huber-White information 
sandwich,  
 

    ˆ ˆ( )( )T T T
i i i i i i i i

i

B X y y X Bµ µ⎡ ⎤Γ − − Γ⎢ ⎥⎣ ⎦
∑   (8) 

 
where 1( )T TB X X −= ΓΓ , AΓ = ∆  and 

i iAΓ = ∆ . (Huber, 1967; White, 1980). In the 
literature (7) is often called a naive or model-
based variance estimator, whereas (8) is called a 
robust or empirical variance estimator.  
 In practice, users of GEE typically select 
the variance function g based on the type of 
response variable. When ijy  is a frequency or 
count, for example, a natural choice is 
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( )ij ijg µ µ= . The working correlation matrix 

( )iM α  is chosen to reflect the hypothesized 
relationships among responses within subjects. 
Popular choices of ( )iM α  include 
independence, exchangeable, one-dependent, 
auto-regressive or unstructured. In the 
independence model, ( )iM Iα =  and α  is 
empty. Exchangeability means 

( ) (1 ) 11T
iM Iα α α= − + . In the one-dependent 

case, the ( , 1)tht t +  element of M  is taken to be 

tα . Auto-regressive correlations can be 

expressed as | |( , ) ij ikt t
ij ikCorr y y α −= , where ijt  

and ikt  are the observation times associated with 

ijy  and iky , respectively. Under the 

unstructured model, ( )iM α  is completely 
unspecified. In that case, the data must be able to 
support the estimation of all unknown 
correlation parameters, which requires 
measurements at a relatively small number of 
common time points.  

The GEE and sandwich methods attempt 
to “robustify” inferences by relaxing 
assumptions on the data model, but in doing so, 
they impose stronger assumptions on dropout 
mechanisms. The impact of missing data in GEE 
is quite different from parametric modeling. 
When elements of iy  are missing, one can omit 
the missed occasions for certain covariance 
structures. Liang and Zeger (1986) noted that if 
the working covariance assumptions are correct, 
the GEE estimator and the model-based 
covariance matrix (7) are consistent under MAR, 
because GEE then becomes maximum 
likelihood (ML). If the covariance assumptions 
are wrong, consistency of the GEE estimation 
and the information sandwich generally requires 
the missing data to be MCAR, because the 
sandwich has no likelihood interpretation. Work 
on weighted estimating equations (WEE) 
attempts to resolve this problem. 
 
Joint models for longitudinal response and 
dropout 

In practice, the hypothesis of random 
dropout is essentially untestable; it cannot be 

verified nor contradicted by examination of the 
observed data (Little & Rubin, 2002 Chap. 15). 
If this assumption is doubtful, alternative 
procedures should be developed, especially 
when the degree of departure from MAR is 
thought to be severe. When nonignorable 
missingness is suspected, it is necessary to make 
strong assumptions about the missingness 
mechanism and propose a specific model for it. 
That is, one needs to model the joint distribution 
of the longitudinal response and the dropout. 
From the likelihood point of view, there are two 
major ways to construct these models based on 
different factorizations of the joint distribution: 
selection models and pattern-mixture models. 
 
Selection models 
 Selection models, which first appeared 
in the econometrics literature (Heckman, 1976; 
Amemiya, 1984), combine a model for the 
distribution of the complete data with a 
conditional model for the indicators of 
missingness given the data. In selection models 
(suppressing the parameters in the notation), the 
joint distribution of ( , | )i i if y r x  is factored as 

( | ) ( | , )i i i i if y x f r y x . For example, one could 
assume that (a) a response variable follows a 
classical linear regression given a set of 
covariates, and (b) the probability that a 
response is observed is related to covariates and 
the response itself through a logit or probit 
regression function. These regression-type 
selection models have become a standard tool of 
econometricians (Maddala, 1983; Greene, 2000). 
The OSWALD software package (Smith et al., 
1996) provides model-fitting routines for 
longitudinal data; this software is based on an 
extension of the work in Diggle and Kenward 
(1994). 

Considering the responses and 
covariates to be the reasons for missingness, as a 
selection model does, can be intuitively 
appealing. Despite their conceptual appeal, the 
reputation of these models among statisticians is 
highly controversial. For example, Little and 
Rubin (2002, Chap. 15) argued that results from 
these models tend to be highly sensitive to 
departures from the assumptions about the shape 
of the complete-data population. In one 
example, Kenward (1998) demonstrated that a 
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slight perturbation to the population model—
assuming a Student’s t-distribution rather than a 
normal—caused drastic changes in parameter 
estimates. For these reasons, many statisticians 
tend to regard them as non-robust (see the 
discussion following the article by Diggle & 
Kenward, 1994). 
 
Pattern-mixture models 

Pattern-mixture models, a term coined 
by Little (1993), refers to the alternative strategy 
of first modeling the marginal distribution of the 
missingness indicators, and then the conditional 
distribution of the complete data given the 
pattern of missingness. The population of the 
complete data then becomes a mixture of 
distributions, weighted by the probabilities of 
the missingness patterns. Again, suppressing the 
parameters in the notation, ( , | )i i if y r x  is 
factored as ( | ) ( | , )i i i i if r x f y r x . 

For example, consider a bivariate 
sample in which 1Y  is observed for all subjects 
but 2Y  is missing for some. A simple pattern-
mixture model posits a Bernoulli distribution for 
R , a bivariate normal distribution for 1 2( , )Y Y  
given that 1R = , and another bivariate normal 
distribution for  1 2( , )Y Y  given that 0R = . 
Because the conditional distribution of 2Y  given 

1Y  is unobservable when 0R = , unverifiable 
assumptions must be made about this 
distribution in order to estimate aspects of the 
distribution of 2Y  in the full population. The 
assumptions of pattern-mixture models are no 
less strong than those of selection models, but 
some consider them to be more honest, because 
one knows precisely which parameters in the 
model formulation cannot be estimated from the 
observed data. Results from fitting these pattern-
specific models are then averaged to obtain 
parameter estimates for the overall population 
(e.g. Hedeker & Gibbons, 1997). Alternatively, 
this process of averaging can be performed 
through multiple imputation (Glynn, Laird & 
Rubin, 1993). 

Little (1995) defined two types of 
pattern-mixture models for nonignorable 
dropout: those with outcome-dependent dropout 

and those with random-effect-dependent 
dropout. In outcome-dependent models, subjects 
are grouped according to their dropout times and 
identifying restrictions are placed on the 
missing-value distributions for those groups 
(Little, 1993; Little & Wang, 1996; 
Molenberghs et al., 1998). In random-effect-
dependent models, a random-coefficient model 
(1) is formulated with summaries of dropout 
time included as subject-level covariates (Wu & 
Bailey, 1989; Hedeker & Gibbons, 1997; 
Fitzmaurice et al., 2001). Little (1995) suggested 
that outcome-dependent models are appropriate 
when reasons for dropout seem closely related to 
the response variable itself, whereas random-
effect-dependent models ascribe dropout to an 
underlying process (e.g. progression of a 
disease) which the outcome variable measures 
only imperfectly. 

 
Weighted estimating equations 

GEE may produce biased estimates if 
there are missing data, unless the data are 
MCAR. The method breaks down if the data are 
missing in a non-MCAR fashion, because the 
estimating equations on which they are based no 
longer have zero expectation. This problem 
suggests a method of modifying the estimating 
equations by applying weights which are 
proportional to the inverse-probabilities of 
response. Weighted estimating equations (WEE) 
that allow for non-MCAR missingness were first 
proposed by Robins, Rotnitzky and Zhao (1994, 
1995). WEE are the semiparametric counterpart 
of joint modeling. 

The price to be paid for incorporating 
weights is that a model must be specified for the 
missingness mechanism. Depending on the form 
of missingness model, WEE can handle MAR 
and MNAR mechanisms, but the parameters of 
an MNAR model are harder to estimate. Let iW  
be an i in n×  matrix that contains the weights for 

subject i . iW  replaces the term 1
i i iAV −∆  in  (6). 

So the information contained in i∆ , iA  and 1
iV −  

about β  and α  is transferred to iW . The 
weighted version of estimating equations 
becomes  
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1

( ) ( ) 0
m

T
i i i i

i
S X W yβ µ

=

= − =∑               (9) 

 
The weight matrix iW  is, in most cases, an  

i in n×  matrix whose thj  diagonal element is an 
estimate of the reciprocal-probability that the  

thj  element of yi is observed. In that case, it is 
easy to see how the weighting scheme leads to a 
set of unbiased estimating equations. Modifying 
the notation a bit, let ijy , ijµ , ijw  and ijr  be the 
observed response, expected response, weight 
and missingness indicator, respectively for 
subject i at occasion j, respectively. The 
estimating equations become  

 
( ) ( )w

k ij ij k
i j

S w Sβ β= ∑∑         

( ) 0ij ijk ij ij
i j

w x y µ= − =∑∑ .

1/ ( 1) 1/ ( )ij ij ijw P r E r= = =  
implies 
 

( ( )) 0R y kE E S β⎡ ⎤ =⎣ ⎦ . 

 
(Carlin et al., 1999). In practice, the selection 
probabilities 1

ijw−  are unknown and can, at best, 
be estimated by a logistic regression on similar-
type of model for the ijr ’s. As shown by Robins 
et al. (1994, 1995), the asymptotic properties of 
the method are preserved if the inverse-weights  

1
ijw−  are m − consistent estimates of the actual 

response probabilities. 
In WEE, one is simply discarding the 

subject-occasions that are difficult to use 
because of missing responses and/or covariates, 
and reweighting the rest to make them seem 
more representative of the population. Robins, 
Rotnitzky and Zhao (1994) discard subject-
observations with missing covariates. Robins, 
Rotnitzky and Zhao (1995) discard subject-
observations with missing responses. Rotnitzky 
and Robins (1997), Rotnitzky, Robins and 
Scharfstein (1998) and Scharfstein, Rotnitzky 
and Robins (1999) discard various sets of 
subject-occasions for which covariates and/or 

responses are missing. The same idea is being 
applied in every case: estimating the inverse 
response probabilities using any information that 
seems to be related to missingness, including 
static covariates, time-varying covariates, 
baseline measures, pre-dropout responses or 
even post-dropout responses. With a post-
dropout response, however, the influence on the 
response probability can only be guessed. 
 

Application 
Regarding the psychiatric dataset that 

was introduced before, Hedeker and Gibbons 
(1997) noted that the mean response profiles are 
approximately linear when plotted against the 
square root of week, and they express time on 
the square-root scale in their models. Adopting 
this convention, T (time) is defined to be the 
square root of week, and the time of last 
measurement R (which will be relevant in 
pattern-mixture models) is also expressed on the 
square-root scale. Furthermore, let G be an 
indicator for treatment group (0=placebo, 
1=drug) and D an indicator of dropout status 
(0=completer, 1=dropout). The treatment effect 
is defined to be the difference in average slopes 
between the drug and placebo groups. In other 
words, the parameter of interest is the treatment 
by time interaction (drug effect over time) G×T. 

Two ad-hoc approaches (LOCF and 
completers only), model-based parametric 
approaches (selection and pattern-mixture 
models) and model-based semiparametric 
methods (unweighted and weighted generalized 
estimating equations) have been applied to this 
particular dataset and an estimate of treatment 
by time interaction and its standard error is 
obtained for each analysis method. 

Model fitting procedures for selection 
models are implemented through OSWALD 
(Smith et al., 1996). It finds the most likely 
values of the data and dropout model parameters 
jointly by the simplex algorithm developed by 
Nelder and Mead (1965). It allows three 
components of variance: a random intercept 
between subjects (with variance 2υ ), a 
measurement error realized independently 
between two responses (with variance 2τ ) and a 
serial association component (with variance 

2σ and autocorrelation function 
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( ) exp( | |)u uρ φ= − . The marginal covariance 
matrix for iy  is 2 2 2

iH I Jσ τ υ+ + , where 
(| |)i ij ikH t tρ= − , J  is the matrix of ones and 

I  is the identity. In linear mixed model notation 
it is equivalent to 2T

i iZ Z Iψ σ+ . Regression 
parameters for the data model part are 
interpreted in the same way as in linear mixed 
models. It is again assumed that 

i i i i iy X Z bβ ε= + +  where the columns of iX  
are a constant (one), G, T, and G×T. The 
columns of iZ  are a constant and T. The dropout 
(D) is assumed to depend on the time of the 
measurement (T), the treatment group (G) and 
some function of responses (see below) through 
a logit link. 

Pattern-mixture models are implemented by 
incorporating summaries of R and their 
interactions with G and T into the fixed effects 
design matrix ( iX ) in Equation (1). Then, it is 
proceeded by multiple imputation (MI) to obtain 
simulated values that are drawn from a Bayesian 
posterior predictive distribution for the missing 
values given the observed values and the 
dropout times. To create MI’s for missing 
elements of iy  in a random-coefficient model, 
first a prior distribution for β  and the 
covariance parameters in ψ , 2σ  and iV  must 
be specified. Then, a random value of these 
parameters is drawn from their joint posterior 
distribution given the observed elements of iy . 
Finally, the missing elements of iy  are drawn 
from their conditional distribution given the 
observed elements derived from the marginal 
model 2( , )T

i i i i iy N X Z Z Vβ ψ σ+∼ , with β , 

ψ , 2σ  and iV  replaced by their simulated 
values. Repeating these steps m times produces 
m multiple imputations of the missing responses. 
Applications of MI to pattern-mixture models 
have been described by Verbeke and 
Molenberghs (2000) and Thijs et al. (2002). MI 
without large-sample approximations is possible 
by Markov chain Monte Carlo (MCMC), as 
described by Liu et al. (2000). SAS PROC 
MIXED provides an MCMC procedure for 

simulating posterior draws of model parameters 
without large-sample approximations.  

The PAN library for S-PLUS developed 
by Schafer (1997b) performs these computations 
rather quickly under conjugate priors for 2σ  
and ψ  (scaled inverted chi-square and inverted 
Wishart, respectively) and iV I= . Important 
issues in using these techniques, including the 
choice of prior hyperparameters and monitoring 
convergence of the MCMC algorithm, are 
discussed in Schafer (2001). Once the 
imputations have been created, completed 
datasets are analyzed with a direct maximum 
likelihood approach under linear mixed effects 
model that includes G, T and G×T. Finally 
estimates from m=10 imputations are combined 
by Rubin’s (1987) rules. For a deeper discussion 
of these issues, see Demirtas and Schafer (2003). 

Estimating equations-based approaches 
(GEE and WEE) are implemented through the 
software package YAGS (yet another GEE 
solver). An intercept, G, T and G×T are included 
in the model. In the unweighted version (GEE), 
correlation structure has chosen to be 
“independence” and “exchangeable”. In WEE, 
weights are estimated based on the inverse 
probability of being observed for every subject-
occasion in the dataset. Two ignorable 
mechanisms were assumed where weights are 
estimated by a logistic regression in which 
outcome variable is response/nonresponse 
indicator and covariates are T, G and some 
function of responses (see below). 

In what follows, SM stands for selection 
model, PMM stands for pattern-mixture model; 
GEE and WEE are as defined before. Other 
details are described below: 
 
LOCF: The last available measurement is 

carried forward to fill in unobserved cells.  
COMP-ONLY: Only subjects having full set of 

measurements are considered for the 
analysis.  

SM-1: D depends on G, T and the previous 
response; assumes ignorability.  

SM-2: Same as SM-1 except that D depends on 
the average of available responses rather than 
the previous response.  
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SM-3: Same as SM-1 and SM-2 except that D 
depends on the current response rather than 
previous responses; assumes nonignorable 
dropout.  

SM-4: Same as SM-3 except that D depends on 
the current and previous response.  

PMM-1 Pattern-mixture model with T, G, D, 
G×T, D×T, G×D and an intercept in the fixed 
effects part; random intercept and slope in 
the random part of the linear mixed model 
(1).  

PMM-2: Same as PMM-1, except that a linear 
term is used for the time of last measurement 
(R) rather than D.  

PMM-3: PMM that does the extrapolation 
within each pattern without borrowing any 
information from other patterns.  

PMM-4: PMM that borrows information from 
completers for inestimable parameters.  

PMM-5: Same as PMM-4 except that 
information is borrowed from the 
neighboring pattern rather than completers.  

PMM-6: Same as PMM-5 except that 
information is borrowed from all available 
patterns (by a weighted average of estimable 
parameters from all other patterns) rather 
than the neighboring pattern.  

GEE-1: Unweighted GEE with “independence” 
correlation structure.  

GEE-2: Same as GEE-2 with “exchangeable” 
correlations.  

WEE-1: Weighted version of GEE-1 where 
weights are assumed to depend on T, G and 
the average of observed responses for each 
subject.  

WEE-2: Same as WEE-1 except that the 
previous response is used rather than the 
average of observed responses in weight 
calculations.  

 
Conclusion 

 
Estimated coefficients for drug effect over time 
(G×T) and their standard errors under different 
analysis methods are tabulated in Table 1. 
Estimated coefficients are varying in a fairly 
wide range as well as their standard errors. 
Although one can safely conclude that there is a 

drug effect over time, the true magnitude of this 
effect is disputable. True data model and 
dropout mechanism are rarely known in practice, 
therefore it is advisable that statisticians should 
attack the problem with the help of applied 
researchers/scientists to be more competent with 
discipline-specific issues. Subject-matter 
considerations are as important as the actual 
analysis method.  

Another important issue is sensitivity. 
Models for incomplete data can be sensitive to 
untestable assumptions and/or inestimable 
parameters. Sensitivity analyses are universally 
acknowledged as crucial, because observed data 
cannot reveal the true missing-data mechanism. 
These analyses are usually conducted by 
applying a variety of models to one dataset to 
see how the estimated effects vary due to 
differing modeling assumptions. If our basic 
conclusions about effects of interest do not 
change drastically over this family, then the 
scientific validity of these conclusions is 
enhanced. Conversely, if the answers do exhibit 
great variation, drawing firm conclusions seems 
unwise. For examples of sensitivity analyses, see 
Little and Wang (1996) and Chapter 20 of 
Verbeke and Molenberghs (2000). 

Robustness studies are less common 
than sensitivity analyses mentioned, but they are 
also extremely valuable. A robust method will 
perform well when applied to a variety of 
situations when its assumptions are not met. 
Considerations of robustness may allow us to 
prefer one model, 1Model , to another, 2Model , 
even when  1Model and  2Model  achieve the 
same likelihood for the current data set. That is, 
if a variety of plausible joint population models 
is devised for response and dropout—different 
in nature but all tending to produce samples that 
resemble the observed data— and if, by 
simulation, it is discovered that Model1 
performs better than Model2 across many of 
these populations, then there may be more of am 
inclination to trust Model1 than Model2.  

Applying models to a variety of 
populations consistent with observed data is a 
useful tool to assess robustness of the models 
under consideration. These simulations can help 
us to answer important questions that are being 
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raised by potential users of nonignorable 
methods. When nonignorable dropout cannot be 
ruled out, robustness analyses are preferable to 
placing total faith in a single model. Although 
the truth is never known, a model that performs 
well under differing assumptions that yields 
simulated datasets which mimic the real data can 
be regarded as more trustworthy. 

Although analyzing a real dataset using the 
proposed methodology is useful and insightful, 
simulations are needed to assess how well the 
method performs. Because there is no consensus 
among statisticians about which competing 
method is best, many advocate sensitivity 
analysis by trying  a variety of  method  and then 

 
 

 
 
seeing what happens, and/or identifying 
parameters that are nearly or truly inestimable 
and varying them over a plausible range. 

This approach is certainly valuable, but 
limited. Methods that fit the data equally well 
may give different estimates and intervals for 
parameters of interest. But, that does not mean 
that the methods are equally robust to departures 
from the assumed model. Another approach to 

sensitivity analysis is to simulate the 
performance of a method when its assumptions 
are wrong by proposing a variety of populations 
and dropout mechanisms capable of producing 
data like actually seen; then simulating behavior 
of various methods over repeated samples from 
each population; and identifying methods that 
seem to perform well for a variety of 
populations. Simulations driven by the latter 
approach are recommended to find arguably the 
best method that leads to accurate estimates and 
narrow, calibrated intervals under plausible 
population/dropout mechanisms.  
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