726 research outputs found

    Improving data quality in neuronal population recordings

    Get PDF
    Understanding how the brain operates requires understanding how large sets of neurons function together. Modern recording technology makes it possible to simultaneously record the activity of hundreds of neurons, and technological developments will soon allow recording of thousands or tens of thousands. As with all experimental techniques, these methods are subject to confounds that complicate the interpretation of such recordings, and could lead to erroneous scientific conclusions. Here, we discuss methods for assessing and improving the quality of data from these techniques, and outline likely future directions in this field

    A Semiparametric Bayesian Model for Detecting Synchrony Among Multiple Neurons

    Full text link
    We propose a scalable semiparametric Bayesian model to capture dependencies among multiple neurons by detecting their co-firing (possibly with some lag time) patterns over time. After discretizing time so there is at most one spike at each interval, the resulting sequence of 1's (spike) and 0's (silence) for each neuron is modeled using the logistic function of a continuous latent variable with a Gaussian process prior. For multiple neurons, the corresponding marginal distributions are coupled to their joint probability distribution using a parametric copula model. The advantages of our approach are as follows: the nonparametric component (i.e., the Gaussian process model) provides a flexible framework for modeling the underlying firing rates; the parametric component (i.e., the copula model) allows us to make inference regarding both contemporaneous and lagged relationships among neurons; using the copula model, we construct multivariate probabilistic models by separating the modeling of univariate marginal distributions from the modeling of dependence structure among variables; our method is easy to implement using a computationally efficient sampling algorithm that can be easily extended to high dimensional problems. Using simulated data, we show that our approach could correctly capture temporal dependencies in firing rates and identify synchronous neurons. We also apply our model to spike train data obtained from prefrontal cortical areas in rat's brain

    Spiking Neural Networks

    Get PDF

    Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of neoHebbian Three-Factor Learning Rules

    Full text link
    Most elementary behaviors such as moving the arm to grasp an object or walking into the next room to explore a museum evolve on the time scale of seconds; in contrast, neuronal action potentials occur on the time scale of a few milliseconds. Learning rules of the brain must therefore bridge the gap between these two different time scales. Modern theories of synaptic plasticity have postulated that the co-activation of pre- and postsynaptic neurons sets a flag at the synapse, called an eligibility trace, that leads to a weight change only if an additional factor is present while the flag is set. This third factor, signaling reward, punishment, surprise, or novelty, could be implemented by the phasic activity of neuromodulators or specific neuronal inputs signaling special events. While the theoretical framework has been developed over the last decades, experimental evidence in support of eligibility traces on the time scale of seconds has been collected only during the last few years. Here we review, in the context of three-factor rules of synaptic plasticity, four key experiments that support the role of synaptic eligibility traces in combination with a third factor as a biological implementation of neoHebbian three-factor learning rules

    Sensory coding in supragranular cells of the vibrissal cortex in anesthetized and awake mice

    Get PDF
    Sensory perception entails reliable representation of the external stimuli as impulse activity of individual neurons (i.e. spikes) and neuronal populations in the sensory area. An ongoing challenge in neuroscience is to identify and characterize the features of the stimuli which are relevant to a specific sensory modality and neuronal strategies to effectively and efficiently encode those features. It is widely hypothesized that the neuronal populations employ “sparse coding” strategies to optimize the stimulus representations with a low energetic cost (i.e. low impulse activity). In the past two decades, a wealth of experimental evidence has supported this hypothesis by showing spatiotemporally sparse activity in sensory area. Despite numerous studies, the extent of sparse coding and its underlying mechanisms are not fully understood, especially in primary vibrissal somatosensory cortex (vS1), which is a key model system in sensory neuroscience. Importantly, it is not clear yet whether sparse activation of supragranular vS1 is due to insufficient synaptic input to the majority of the cells or the absence of effective stimulus features. In this thesis, first we asked how the choice of stimulus could affect the degree of sparseness and/or the overall fraction of the responsive vS1 neurons. We presented whisker deflections spanning a broad range of intensities, including “standard stimuli” and a high-velocity, “sharp” stimulus, which simulated the fast slip events that occur during whisker mediated object palpation. We used whole-cell and cell-attached recording and calcium imaging to characterize the neuronal responses to these stimuli. Consistent with previous literature, whole-cell recording revealed a sparse response to the standard range of velocities: although all recorded cells showed tuning to velocity in their postsynaptic potentials, only a small fraction produced stimulus-evoked spikes. In contrast, the sharp stimulus evoked reliable spiking in a large fraction of regular spiking neurons in the supragranular vS1. Spiking responses to the sharp stimulus were binary and precisely timed, with minimum trial-to-trial variability. Interestingly, we also observed that the sharp stimulus produced a consistent and significant reduction in action potential threshold. In the second step we asked whether the stimulus dependent sparse and dense activations we found in anesthetized condition would generalize to the awake condition. We employed cell-attached recordings in head-fixed awake mice to explore the degree of sparseness in awake cortex. Although, stimuli delivered by a piezo-electric actuator evoked significant response in a small fraction of regular spiking supragranular neurons (16%-29%), we observed that a majority of neurons (84%) were driven by manual probing of whiskers. Our results demonstrate that despite sparse activity, the majority of neurons in the superficial layers of vS1 contribute to coding by representing a specific feature of the tactile stimulus. Thesis outline: Chapter 1 provides a review of the current knowledge on sparse coding and an overview of the whisker-sensory pathway. Chapter 2 represents our published results regarding sparse and dense coding in vS1 of anesthetized mice (Ranjbar-Slamloo and Arabzadeh 2017). Chapter 3 represents our pending manuscript with results obtained with piezo and manual stimulation in awake mice. Finally, in Chapter 4 we discuss and conclude our findings in the context of the literature. The appendix provides unpublished results related to Chapter 2. This section is referenced in the final chapter for further discussion

    Event-based neuromorphic stereo vision

    Full text link

    Sensor fusion in distributed cortical circuits

    Get PDF
    The substantial motion of the nature is to balance, to survive, and to reach perfection. The evolution in biological systems is a key signature of this quintessence. Survival cannot be achieved without understanding the surrounding world. How can a fruit fly live without searching for food, and thereby with no form of perception that guides the behavior? The nervous system of fruit fly with hundred thousand of neurons can perform very complicated tasks that are beyond the power of an advanced supercomputer. Recently developed computing machines are made by billions of transistors and they are remarkably fast in precise calculations. But these machines are unable to perform a single task that an insect is able to do by means of thousands of neurons. The complexity of information processing and data compression in a single biological neuron and neural circuits are not comparable with that of developed today in transistors and integrated circuits. On the other hand, the style of information processing in neural systems is also very different from that of employed by microprocessors which is mostly centralized. Almost all cognitive functions are generated by a combined effort of multiple brain areas. In mammals, Cortical regions are organized hierarchically, and they are reciprocally interconnected, exchanging the information from multiple senses. This hierarchy in circuit level, also preserves the sensory world within different levels of complexity and within the scope of multiple modalities. The main behavioral advantage of that is to understand the real-world through multiple sensory systems, and thereby to provide a robust and coherent form of perception. When the quality of a sensory signal drops, the brain can alternatively employ other information pathways to handle cognitive tasks, or even to calibrate the error-prone sensory node. Mammalian brain also takes a good advantage of multimodal processing in learning and development; where one sensory system helps another sensory modality to develop. Multisensory integration is considered as one of the main factors that generates consciousness in human. Although, we still do not know where exactly the information is consolidated into a single percept, and what is the underpinning neural mechanism of this process? One straightforward hypothesis suggests that the uni-sensory signals are pooled in a ploy-sensory convergence zone, which creates a unified form of perception. But it is hard to believe that there is just one single dedicated region that realizes this functionality. Using a set of realistic neuro-computational principles, I have explored theoretically how multisensory integration can be performed within a distributed hierarchical circuit. I argued that the interaction of cortical populations can be interpreted as a specific form of relation satisfaction in which the information preserved in one neural ensemble must agree with incoming signals from connected populations according to a relation function. This relation function can be seen as a coherency function which is implicitly learnt through synaptic strength. Apart from the fact that the real world is composed of multisensory attributes, the sensory signals are subject to uncertainty. This requires a cortical mechanism to incorporate the statistical parameters of the sensory world in neural circuits and to deal with the issue of inaccuracy in perception. I argued in this thesis how the intrinsic stochasticity of neural activity enables a systematic mechanism to encode probabilistic quantities within neural circuits, e.g. reliability, prior probability. The systematic benefit of neural stochasticity is well paraphrased by the problem of Duns Scotus paradox: imagine a donkey with a deterministic brain that is exposed to two identical food rewards. This may make the animal suffer and die starving because of indecision. In this thesis, I have introduced an optimal encoding framework that can describe the probability function of a Gaussian-like random variable in a pool of Poisson neurons. Thereafter a distributed neural model is proposed that can optimally combine conditional probabilities over sensory signals, in order to compute Bayesian Multisensory Causal Inference. This process is known as a complex multisensory function in the cortex. Recently it is found that this process is performed within a distributed hierarchy in sensory cortex. Our work is amongst the first successful attempts that put a mechanistic spotlight on understanding the underlying neural mechanism of Multisensory Causal Perception in the brain, and in general the theory of decentralized multisensory integration in sensory cortex. Engineering information processing concepts in the brain and developing new computing technologies have been recently growing. Neuromorphic Engineering is a new branch that undertakes this mission. In a dedicated part of this thesis, I have proposed a Neuromorphic algorithm for event-based stereoscopic fusion. This algorithm is anchored in the idea of cooperative computing that dictates the defined epipolar and temporal constraints of the stereoscopic setup, to the neural dynamics. The performance of this algorithm is tested using a pair of silicon retinas

    Sensor fusion in distributed cortical circuits

    Get PDF
    The substantial motion of the nature is to balance, to survive, and to reach perfection. The evolution in biological systems is a key signature of this quintessence. Survival cannot be achieved without understanding the surrounding world. How can a fruit fly live without searching for food, and thereby with no form of perception that guides the behavior? The nervous system of fruit fly with hundred thousand of neurons can perform very complicated tasks that are beyond the power of an advanced supercomputer. Recently developed computing machines are made by billions of transistors and they are remarkably fast in precise calculations. But these machines are unable to perform a single task that an insect is able to do by means of thousands of neurons. The complexity of information processing and data compression in a single biological neuron and neural circuits are not comparable with that of developed today in transistors and integrated circuits. On the other hand, the style of information processing in neural systems is also very different from that of employed by microprocessors which is mostly centralized. Almost all cognitive functions are generated by a combined effort of multiple brain areas. In mammals, Cortical regions are organized hierarchically, and they are reciprocally interconnected, exchanging the information from multiple senses. This hierarchy in circuit level, also preserves the sensory world within different levels of complexity and within the scope of multiple modalities. The main behavioral advantage of that is to understand the real-world through multiple sensory systems, and thereby to provide a robust and coherent form of perception. When the quality of a sensory signal drops, the brain can alternatively employ other information pathways to handle cognitive tasks, or even to calibrate the error-prone sensory node. Mammalian brain also takes a good advantage of multimodal processing in learning and development; where one sensory system helps another sensory modality to develop. Multisensory integration is considered as one of the main factors that generates consciousness in human. Although, we still do not know where exactly the information is consolidated into a single percept, and what is the underpinning neural mechanism of this process? One straightforward hypothesis suggests that the uni-sensory signals are pooled in a ploy-sensory convergence zone, which creates a unified form of perception. But it is hard to believe that there is just one single dedicated region that realizes this functionality. Using a set of realistic neuro-computational principles, I have explored theoretically how multisensory integration can be performed within a distributed hierarchical circuit. I argued that the interaction of cortical populations can be interpreted as a specific form of relation satisfaction in which the information preserved in one neural ensemble must agree with incoming signals from connected populations according to a relation function. This relation function can be seen as a coherency function which is implicitly learnt through synaptic strength. Apart from the fact that the real world is composed of multisensory attributes, the sensory signals are subject to uncertainty. This requires a cortical mechanism to incorporate the statistical parameters of the sensory world in neural circuits and to deal with the issue of inaccuracy in perception. I argued in this thesis how the intrinsic stochasticity of neural activity enables a systematic mechanism to encode probabilistic quantities within neural circuits, e.g. reliability, prior probability. The systematic benefit of neural stochasticity is well paraphrased by the problem of Duns Scotus paradox: imagine a donkey with a deterministic brain that is exposed to two identical food rewards. This may make the animal suffer and die starving because of indecision. In this thesis, I have introduced an optimal encoding framework that can describe the probability function of a Gaussian-like random variable in a pool of Poisson neurons. Thereafter a distributed neural model is proposed that can optimally combine conditional probabilities over sensory signals, in order to compute Bayesian Multisensory Causal Inference. This process is known as a complex multisensory function in the cortex. Recently it is found that this process is performed within a distributed hierarchy in sensory cortex. Our work is amongst the first successful attempts that put a mechanistic spotlight on understanding the underlying neural mechanism of Multisensory Causal Perception in the brain, and in general the theory of decentralized multisensory integration in sensory cortex. Engineering information processing concepts in the brain and developing new computing technologies have been recently growing. Neuromorphic Engineering is a new branch that undertakes this mission. In a dedicated part of this thesis, I have proposed a Neuromorphic algorithm for event-based stereoscopic fusion. This algorithm is anchored in the idea of cooperative computing that dictates the defined epipolar and temporal constraints of the stereoscopic setup, to the neural dynamics. The performance of this algorithm is tested using a pair of silicon retinas

    Utility of Independent Component Analysis for Interpretation of Intracranial EEG

    Get PDF
    Electrode arrays are sometimes implanted in the brains of patients with intractable epilepsy to better localize seizure foci before epilepsy surgery. Analysis of intracranial EEG (iEEG) recordings is typically performed in the electrode channel domain without explicit separation of the sources that generate the signals. However, intracranial EEG signals, like scalp EEG signals, could be linear mixtures of local activity and volume-conducted activity arising in multiple source areas. Independent component analysis (ICA) has recently been applied to scalp EEG data, and shown to separate the signal mixtures into independently generated brain and non-brain source signals. Here, we applied ICA to unmix source signals from intracranial EEG recordings from four epilepsy patients during a visually cued finger movement task in the presence of background pathological brain activity. This ICA decomposition demonstrated that the iEEG recordings were not maximally independent, but rather are linear mixtures of activity from multiple sources. Many of the independent component (IC) projections to the iEEG recording grid were consistent with sources from single brain regions, including components exhibiting classic movement-related dynamics. Notably, the largest IC projection to each channel accounted for no more than 20–80% of the channel signal variance, implying that in general intracranial recordings cannot be accurately interpreted as recordings of independent brain sources. These results suggest that ICA can be used to identify and monitor major field sources of local and distributed functional networks generating iEEG data. ICA decomposition methods are useful for improving the fidelity of source signals of interest, likely including distinguishing the sources of pathological brain activity
    • …
    corecore