225 research outputs found

    Survey of Rough and Fuzzy Hybridization

    Get PDF
    In this research existing barriers and the influence of product’s functional lifecycle on the adoption of circular revenue models in the civil and non-residential building sector was investigated. A revenue model, i.e. how revenues are generated in a business model, becomes circular if it is used to extend producer responsibility to create financial incentives for producers to benefit from making their product more circular. For example, leasing or a buy-back scheme in theory creates an incentive for producers to, amongst others, make the product last longer, to be maintained more easily and to be returned. In the Dutch national policy documents there is a call for the development of circular revenue models to extend producer responsibility in the construction sector, as the construction sector is highlighted as a key sector in terms of environmental impact. Adopting circular revenue models in the construction has so far not been research, however expectations about barriers towards adopting circular revenue models can be derived from related literature. The civil and non-residential building sub-sector of the construction sector is of special interest as this subsector has specific characteristics that were expected to create barriers towards adopting circular revenue models: ownership rights and the long functional lifecycle of products (e.g. buildings). This led to the main research question: “What are the barriers to the adoption of circular revenue models in the civil- and non-residential building sector?” The long functional lifecycle of buildings is of special interest as literature suggests that buildings are made from products with different functional lifecycles. This led to led to an additional sub question: “What is the influence of product’s functional lifecycle on the adoption of circular revenue models in the civil and non-residential building sector?” To answer both research questions, the research was split up into three phases. First, semi-structured interviews were held with practitioners, e.g. companies that have adopted, or are working on adopting, circular revenue models. Based upon the results, a second round of interviews was held with experts to better understand the barriers and gather more in-depth insights. The topics chosen for this round were based on the results from the practitioners. The third research phase was a focus group session held primarily with respondents from the expert and practitioner interviews. During the focus group preliminary results were presented and several topics were discussed. During this research 25 barriers, such as a maximum duration for contracts, short-term thinking and the adoption of measurement methods, towards adopting circular revenue models in the civil and non-residential building sector were found, which fit under five main categories in order of importance: financial, sector-specific, regulatory, organisational and technical barriers. Furthermore, seven additional barriers were found when adopting circular revenue models in which producers retain ownership. This shows that there are many barriers that hinder the adoption of circular revenue models in the civil and non-residential building sector, especially when adopting circular revenue models where producers retain ownership. Furthermore, during this research it was found that the shorter the functional lifecycle of building layers, the more easy the adoption of circular revenue models becomes, because, amongst others, financing for longer that 15 years is difficult and two parties to not like to be mutually dependents upon each other over long time periods. In increasing order of difficulty circular revenue models can be adopted to the building layers with longer functional lifecycles: space plan, services, skin and structure. During the research a consensus amongst respondents was identified that circular revenue models should not be adopted to the structure, as the functional lifecycle was too long. In addition to the functional lifecycle, four additional variables were identified that emphasise why the adoption of circular revenue models to building layers with shorter functional lifecycles is more interesting: ratio CAPEX/OPEX, flexibility of products, focus on investor or user and complexity of products

    Survey of Rough and Fuzzy Hybridization

    Full text link

    The posterity of Zadeh's 50-year-old paper: A retrospective in 101 Easy Pieces – and a Few More

    Get PDF
    International audienceThis article was commissioned by the 22nd IEEE International Conference of Fuzzy Systems (FUZZ-IEEE) to celebrate the 50th Anniversary of Lotfi Zadeh's seminal 1965 paper on fuzzy sets. In addition to Lotfi's original paper, this note itemizes 100 citations of books and papers deemed “important (significant, seminal, etc.)” by 20 of the 21 living IEEE CIS Fuzzy Systems pioneers. Each of the 20 contributors supplied 5 citations, and Lotfi's paper makes the overall list a tidy 101, as in “Fuzzy Sets 101”. This note is not a survey in any real sense of the word, but the contributors did offer short remarks to indicate the reason for inclusion (e.g., historical, topical, seminal, etc.) of each citation. Citation statistics are easy to find and notoriously erroneous, so we refrain from reporting them - almost. The exception is that according to Google scholar on April 9, 2015, Lotfi's 1965 paper has been cited 55,479 times

    Identification of Associations between Cognitive Agents Using Learning Based System

    Get PDF
    The research is to pronounce the socialization with humans after identification of relationships between cognitive agents recognized with the perspective of focus, selective attention, intention and decision making. Machine learning is used to understand environment complexity, dynamic collaboration, noise, features, domain and range on different parameters. Range of view is an interesting approach for relationship identification with respect to time, distance and face direction in a settled boundary that are trying to answer socialized behavior between those multiple agents. In resultant, the system agent finds friend, best friend and stranger relationships between other agents by using top down approach. The application can play a wonderful role for security purposes, gaming, labs, and intelligence agencies etc

    Proceedings of the 5th International Workshop "What can FCA do for Artificial Intelligence?", FCA4AI 2016(co-located with ECAI 2016, The Hague, Netherlands, August 30th 2016)

    Get PDF
    International audienceThese are the proceedings of the fifth edition of the FCA4AI workshop (http://www.fca4ai.hse.ru/). Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classification that can be used for many purposes, especially for Artificial Intelligence (AI) needs. The objective of the FCA4AI workshop is to investigate two main main issues: how can FCA support various AI activities (knowledge discovery, knowledge representation and reasoning, learning, data mining, NLP, information retrieval), and how can FCA be extended in order to help AI researchers to solve new and complex problems in their domain. Accordingly, topics of interest are related to the following: (i) Extensions of FCA for AI: pattern structures, projections, abstractions. (ii) Knowledge discovery based on FCA: classification, data mining, pattern mining, functional dependencies, biclustering, stability, visualization. (iii) Knowledge processing based on concept lattices: modeling, representation, reasoning. (iv) Application domains: natural language processing, information retrieval, recommendation, mining of web of data and of social networks, etc

    Density-based algorithms for active and anytime clustering

    Get PDF
    Data intensive applications like biology, medicine, and neuroscience require effective and efficient data mining technologies. Advanced data acquisition methods produce a constantly increasing volume and complexity. As a consequence, the need of new data mining technologies to deal with complex data has emerged during the last decades. In this thesis, we focus on the data mining task of clustering in which objects are separated in different groups (clusters) such that objects inside a cluster are more similar than objects in different clusters. Particularly, we consider density-based clustering algorithms and their applications in biomedicine. The core idea of the density-based clustering algorithm DBSCAN is that each object within a cluster must have a certain number of other objects inside its neighborhood. Compared with other clustering algorithms, DBSCAN has many attractive benefits, e.g., it can detect clusters with arbitrary shape and is robust to outliers, etc. Thus, DBSCAN has attracted a lot of research interest during the last decades with many extensions and applications. In the first part of this thesis, we aim at developing new algorithms based on the DBSCAN paradigm to deal with the new challenges of complex data, particularly expensive distance measures and incomplete availability of the distance matrix. Like many other clustering algorithms, DBSCAN suffers from poor performance when facing expensive distance measures for complex data. To tackle this problem, we propose a new algorithm based on the DBSCAN paradigm, called Anytime Density-based Clustering (A-DBSCAN), that works in an anytime scheme: in contrast to the original batch scheme of DBSCAN, the algorithm A-DBSCAN first produces a quick approximation of the clustering result and then continuously refines the result during the further run. Experts can interrupt the algorithm, examine the results, and choose between (1) stopping the algorithm at any time whenever they are satisfied with the result to save runtime and (2) continuing the algorithm to achieve better results. Such kind of anytime scheme has been proven in the literature as a very useful technique when dealing with time consuming problems. We also introduced an extended version of A-DBSCAN called A-DBSCAN-XS which is more efficient and effective than A-DBSCAN when dealing with expensive distance measures. Since DBSCAN relies on the cardinality of the neighborhood of objects, it requires the full distance matrix to perform. For complex data, these distances are usually expensive, time consuming or even impossible to acquire due to high cost, high time complexity, noisy and missing data, etc. Motivated by these potential difficulties of acquiring the distances among objects, we propose another approach for DBSCAN, called Active Density-based Clustering (Act-DBSCAN). Given a budget limitation B, Act-DBSCAN is only allowed to use up to B pairwise distances ideally to produce the same result as if it has the entire distance matrix at hand. The general idea of Act-DBSCAN is that it actively selects the most promising pairs of objects to calculate the distances between them and tries to approximate as much as possible the desired clustering result with each distance calculation. This scheme provides an efficient way to reduce the total cost needed to perform the clustering. Thus it limits the potential weakness of DBSCAN when dealing with the distance sparseness problem of complex data. As a fundamental data clustering algorithm, density-based clustering has many applications in diverse fields. In the second part of this thesis, we focus on an application of density-based clustering in neuroscience: the segmentation of the white matter fiber tracts in human brain acquired from Diffusion Tensor Imaging (DTI). We propose a model to evaluate the similarity between two fibers as a combination of structural similarity and connectivity-related similarity of fiber tracts. Various distance measure techniques from fields like time-sequence mining are adapted to calculate the structural similarity of fibers. Density-based clustering is used as the segmentation algorithm. We show how A-DBSCAN and A-DBSCAN-XS are used as novel solutions for the segmentation of massive fiber datasets and provide unique features to assist experts during the fiber segmentation process.Datenintensive Anwendungen wie Biologie, Medizin und Neurowissenschaften erfordern effektive und effiziente Data-Mining-Technologien. Erweiterte Methoden der Datenerfassung erzeugen stetig wachsende Datenmengen und Komplexit\"at. In den letzten Jahrzehnten hat sich daher ein Bedarf an neuen Data-Mining-Technologien f\"ur komplexe Daten ergeben. In dieser Arbeit konzentrieren wir uns auf die Data-Mining-Aufgabe des Clusterings, in der Objekte in verschiedenen Gruppen (Cluster) getrennt werden, so dass Objekte in einem Cluster untereinander viel \"ahnlicher sind als Objekte in verschiedenen Clustern. Insbesondere betrachten wir dichtebasierte Clustering-Algorithmen und ihre Anwendungen in der Biomedizin. Der Kerngedanke des dichtebasierten Clustering-Algorithmus DBSCAN ist, dass jedes Objekt in einem Cluster eine bestimmte Anzahl von anderen Objekten in seiner Nachbarschaft haben muss. Im Vergleich mit anderen Clustering-Algorithmen hat DBSCAN viele attraktive Vorteile, zum Beispiel kann es Cluster mit beliebiger Form erkennen und ist robust gegen\"uber Ausrei{\ss}ern. So hat DBSCAN in den letzten Jahrzehnten gro{\ss}es Forschungsinteresse mit vielen Erweiterungen und Anwendungen auf sich gezogen. Im ersten Teil dieser Arbeit wollen wir auf die Entwicklung neuer Algorithmen eingehen, die auf dem DBSCAN Paradigma basieren, um mit den neuen Herausforderungen der komplexen Daten, insbesondere teurer Abstandsma{\ss}e und unvollst\"andiger Verf\"ugbarkeit der Distanzmatrix umzugehen. Wie viele andere Clustering-Algorithmen leidet DBSCAN an schlechter Per- formanz, wenn es teuren Abstandsma{\ss}en f\"ur komplexe Daten gegen\"uber steht. Um dieses Problem zu l\"osen, schlagen wir einen neuen Algorithmus vor, der auf dem DBSCAN Paradigma basiert, genannt Anytime Density-based Clustering (A-DBSCAN), der mit einem Anytime Schema funktioniert. Im Gegensatz zu dem urspr\"unglichen Schema DBSCAN, erzeugt der Algorithmus A-DBSCAN zuerst eine schnelle Ann\"aherung des Clusterings-Ergebnisses und verfeinert dann kontinuierlich das Ergebnis im weiteren Verlauf. Experten k\"onnen den Algorithmus unterbrechen, die Ergebnisse pr\"ufen und w\"ahlen zwischen (1) Anhalten des Algorithmus zu jeder Zeit, wann immer sie mit dem Ergebnis zufrieden sind, um Laufzeit sparen und (2) Fortsetzen des Algorithmus, um bessere Ergebnisse zu erzielen. Eine solche Art eines "Anytime Schemas" ist in der Literatur als eine sehr n\"utzliche Technik erprobt, wenn zeitaufwendige Problemen anfallen. Wir stellen auch eine erweiterte Version von A-DBSCAN als A-DBSCAN-XS vor, die effizienter und effektiver als A-DBSCAN beim Umgang mit teuren Abstandsma{\ss}en ist. Da DBSCAN auf der Kardinalit\"at der Nachbarschaftsobjekte beruht, ist es notwendig, die volle Distanzmatrix auszurechen. F\"ur komplexe Daten sind diese Distanzen in der Regel teuer, zeitaufwendig oder sogar unm\"oglich zu errechnen, aufgrund der hohen Kosten, einer hohen Zeitkomplexit\"at oder verrauschten und fehlende Daten. Motiviert durch diese m\"oglichen Schwierigkeiten der Berechnung von Entfernungen zwischen Objekten, schlagen wir einen anderen Ansatz f\"ur DBSCAN vor, namentlich Active Density-based Clustering (Act-DBSCAN). Bei einer Budgetbegrenzung B, darf Act-DBSCAN nur bis zu B ideale paarweise Distanzen verwenden, um das gleiche Ergebnis zu produzieren, wie wenn es die gesamte Distanzmatrix zur Hand h\"atte. Die allgemeine Idee von Act-DBSCAN ist, dass es aktiv die erfolgversprechendsten Paare von Objekten w\"ahlt, um die Abst\"ande zwischen ihnen zu berechnen, und versucht, sich so viel wie m\"oglich dem gew\"unschten Clustering mit jeder Abstandsberechnung zu n\"ahern. Dieses Schema bietet eine effiziente M\"oglichkeit, die Gesamtkosten der Durchf\"uhrung des Clusterings zu reduzieren. So schr\"ankt sie die potenzielle Schw\"ache des DBSCAN beim Umgang mit dem Distance Sparseness Problem von komplexen Daten ein. Als fundamentaler Clustering-Algorithmus, hat dichte-basiertes Clustering viele Anwendungen in den unterschiedlichen Bereichen. Im zweiten Teil dieser Arbeit konzentrieren wir uns auf eine Anwendung des dichte-basierten Clusterings in den Neurowissenschaften: Die Segmentierung der wei{\ss}en Substanz bei Faserbahnen im menschlichen Gehirn, die vom Diffusion Tensor Imaging (DTI) erfasst werden. Wir schlagen ein Modell vor, um die \"Ahnlichkeit zwischen zwei Fasern als einer Kombination von struktureller und konnektivit\"atsbezogener \"Ahnlichkeit von Faserbahnen zu beurteilen. Verschiedene Abstandsma{\ss}e aus Bereichen wie dem Time-Sequence Mining werden angepasst, um die strukturelle \"Ahnlichkeit von Fasern zu berechnen. Dichte-basiertes Clustering wird als Segmentierungsalgorithmus verwendet. Wir zeigen, wie A-DBSCAN und A-DBSCAN-XS als neuartige L\"osungen f\"ur die Segmentierung von sehr gro{\ss}en Faserdatens\"atzen verwendet werden, und bieten innovative Funktionen, um Experten w\"ahrend des Fasersegmentierungsprozesses zu unterst\"utzen

    Learning Language from a Large (Unannotated) Corpus

    Full text link
    A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to power a natural language comprehension and generation system, directly from a large, unannotated corpus.Comment: 29 pages, 5 figures, research proposa
    • …
    corecore