43 research outputs found

    Learning When to Switch: Composing Controllers to Traverse a Sequence of Terrain Artifacts

    Full text link
    Legged robots often use separate control policiesthat are highly engineered for traversing difficult terrain suchas stairs, gaps, and steps, where switching between policies isonly possible when the robot is in a region that is commonto adjacent controllers. Deep Reinforcement Learning (DRL)is a promising alternative to hand-crafted control design,though typically requires the full set of test conditions to beknown before training. DRL policies can result in complex(often unrealistic) behaviours that have few or no overlappingregions between adjacent policies, making it difficult to switchbehaviours. In this work we develop multiple DRL policieswith Curriculum Learning (CL), each that can traverse asingle respective terrain condition, while ensuring an overlapbetween policies. We then train a network for each destinationpolicy that estimates the likelihood of successfully switchingfrom any other policy. We evaluate our switching methodon a previously unseen combination of terrain artifacts andshow that it performs better than heuristic methods. Whileour method is trained on individual terrain types, it performscomparably to a Deep Q Network trained on the full set ofterrain conditions. This approach allows the development ofseparate policies in constrained conditions with embedded priorknowledge about each behaviour, that is scalable to any numberof behaviours, and prepares DRL methods for applications inthe real worl

    Guided Curriculum Learning for Walking Over Complex Terrain

    Full text link
    Reliable bipedal walking over complex terrain is a challenging problem, using a curriculum can help learning. Curriculum learning is the idea of starting with an achievable version of a task and increasing the difficulty as a success criteria is met. We propose a 3-stage curriculum to train Deep Reinforcement Learning policies for bipedal walking over various challenging terrains. In the first stage, the agent starts on an easy terrain and the terrain difficulty is gradually increased, while forces derived from a target policy are applied to the robot joints and the base. In the second stage, the guiding forces are gradually reduced to zero. Finally, in the third stage, random perturbations with increasing magnitude are applied to the robot base, so the robustness of the policies are improved. In simulation experiments, we show that our approach is effective in learning walking policies, separate from each other, for five terrain types: flat, hurdles, gaps, stairs, and steps. Moreover, we demonstrate that in the absence of human demonstrations, a simple hand designed walking trajectory is a sufficient prior to learn to traverse complex terrain types. In ablation studies, we show that taking out any one of the three stages of the curriculum degrades the learning performance.Comment: Submitted to Australasian Conference on Robotics and Automation (ACRA) 202

    DiffMimic: Efficient Motion Mimicking with Differentiable Physics

    Full text link
    Motion mimicking is a foundational task in physics-based character animation. However, most existing motion mimicking methods are built upon reinforcement learning (RL) and suffer from heavy reward engineering, high variance, and slow convergence with hard explorations. Specifically, they usually take tens of hours or even days of training to mimic a simple motion sequence, resulting in poor scalability. In this work, we leverage differentiable physics simulators (DPS) and propose an efficient motion mimicking method dubbed DiffMimic. Our key insight is that DPS casts a complex policy learning task to a much simpler state matching problem. In particular, DPS learns a stable policy by analytical gradients with ground-truth physical priors hence leading to significantly faster and stabler convergence than RL-based methods. Moreover, to escape from local optima, we utilize a Demonstration Replay mechanism to enable stable gradient backpropagation in a long horizon. Extensive experiments on standard benchmarks show that DiffMimic has a better sample efficiency and time efficiency than existing methods (e.g., DeepMimic). Notably, DiffMimic allows a physically simulated character to learn Backflip after 10 minutes of training and be able to cycle it after 3 hours of training, while the existing approach may require about a day of training to cycle Backflip. More importantly, we hope DiffMimic can benefit more differentiable animation systems with techniques like differentiable clothes simulation in future research.Comment: ICLR 2023 Code is at https://github.com/jiawei-ren/diffmimic Project page is at https://diffmimic.github.io
    corecore