44 research outputs found

    State Abstraction in MAXQ Hierarchical Reinforcement Learning

    Full text link
    Many researchers have explored methods for hierarchical reinforcement learning (RL) with temporal abstractions, in which abstract actions are defined that can perform many primitive actions before terminating. However, little is known about learning with state abstractions, in which aspects of the state space are ignored. In previous work, we developed the MAXQ method for hierarchical RL. In this paper, we define five conditions under which state abstraction can be combined with the MAXQ value function decomposition. We prove that the MAXQ-Q learning algorithm converges under these conditions and show experimentally that state abstraction is important for the successful application of MAXQ-Q learning.Comment: 7 pages, 2 figure

    A Deep Hierarchical Approach to Lifelong Learning in Minecraft

    Full text link
    We propose a lifelong learning system that has the ability to reuse and transfer knowledge from one task to another while efficiently retaining the previously learned knowledge-base. Knowledge is transferred by learning reusable skills to solve tasks in Minecraft, a popular video game which is an unsolved and high-dimensional lifelong learning problem. These reusable skills, which we refer to as Deep Skill Networks, are then incorporated into our novel Hierarchical Deep Reinforcement Learning Network (H-DRLN) architecture using two techniques: (1) a deep skill array and (2) skill distillation, our novel variation of policy distillation (Rusu et. al. 2015) for learning skills. Skill distillation enables the HDRLN to efficiently retain knowledge and therefore scale in lifelong learning, by accumulating knowledge and encapsulating multiple reusable skills into a single distilled network. The H-DRLN exhibits superior performance and lower learning sample complexity compared to the regular Deep Q Network (Mnih et. al. 2015) in sub-domains of Minecraft

    A Survey on Artificial Intelligence and Robotics

    Get PDF
    Today many multi-national companies or organizations are adopting the use of automation. Automation means replacing the human by intelligent robots or machines which are capable to work as human (may be better than human). Artificial intelligence is a way of making machines, robots or software to think like human. As the concept of artificial intelligence is use in robotics, it is necessary to understand the basic functions which are required for robots to think and work like human. These functions are planning, acting, monitoring, perceiving and goal reasoning. These functions help robots to develop its skills and implement it. Since robotics is a rapidly growing field from last decade, it is important to learn and improve the basic functionality of robots and make it more useful and user-friendly
    corecore