4 research outputs found

    On real-time partitioned multicore systems

    Get PDF
    Partitioning is a common approach to developing mixed-criticality systems, where partitions are isolated from each other both in the temporal and the spatial domain in order to prevent low-criticality subsystems from compromising other subsystems with high level of criticality in case of misbehaviour. The advent of many-core processors, on the other hand, opens the way to highly parallel systems in which all partitions can be allocated to dedicated processor cores. This trend will simplify processor scheduling, although other issues such as mutual interference in the temporal domain may arise as a consequence of memory and device sharing. The paper describes an architecture for multi-core partitioned systems including critical subsystems built with the Ada Ravenscar profile. Some implementation issues are discussed, and experience on implementing the ORK kernel on the XtratuM partitioning hypervisor is presented

    Ada real-time services and virtualization

    Full text link
    Virtualization techniques have received increased attention in the field of embedded real-time systems. Such techniques provide a set of virtual machines that run on a single hardware platform, thus allowing several application programs to be executed as though they were running on separate machines, with isolated memory spaces and a fraction of the real processor time available to each of them.This papers deals with some problems that arise when implementing real-time systems written in Ada on a virtual machine. The effects of virtualization on the performance of the Ada real-time services are analysed, and requirements for the virtualization layer are derived. Virtual-machine time services are also defined in order to properly support Ada real-time applications. The implementation of the ORK+ kernel on the XtratuM supervisor is used as an example

    Hierarchical Scheduling with Ada 2005

    No full text
    Hierarchical scheduling is a basic technique to achieve temporal isolation between applications in high-integrity systems when an integrated approach is opted for over traditional federation. While comparatively heavyweight approaches to hierarchical scheduling have been prevailing until now, the new scheduling features of Ada 2005 enable lighter-weight techniques to be used. This will expectedly result in increasing the efficiency and flexibility of hierarchical scheduling, thus enabling new ways to developing critical applications in Ada. The paper explores the new opportunities opened by Ada 2005 and proposes some concrete techniques for implementing hierarchical scheduling in the new version of the language

    Hierarchical Scheduling with Ada 2005

    No full text
    corecore